1 |
YAMADA Y, YAMADA A. Review—superconcentrated electrolytes for lithium batteries[J]. Journal of the Electrochemical Society, 2015, 162(14): A2406-A2423.
|
2 |
MUÑOZ-MÁRQUEZ M Á, SAUREL D, GÓMEZ-CÁMER J L, et al. Na-ion batteries for large scale applications: A review on anode materials and solid electrolyte interphase formation[J]. Advanced Energy Materials, 2017, 7(20): doi: 10.1002/aenm.201700463.
|
3 |
ZHAO L F, HU Z, LAI W H, et al. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Advanced Energy Materials, 2021, 11(1): doi: 10.1002/aenm.202002704.
|
4 |
LI Y Q, LU Y X, ADELHELM P, et al. Intercalation chemistry of graphite: Alkali metal ions and beyond[J]. Chemical Society Reviews, 2019, 48(17): 4655-4687.
|
5 |
SONG K M, LIU C T, MI L W, et al. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(9): doi: 10.1002/smll.201903194.
|
6 |
ZHAO C L, LU Y X, YUE J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6): 1584-1596.
|
7 |
USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035.
|
8 |
LEE B, PAEK E, MITLIN D, et al. Sodium metal anodes: Emerging solutions to dendrite growth[J]. Chemical Reviews, 2019, 119(8): 5416-5460.
|
9 |
CUI X Y, WANG Y J, WU H D, et al. A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2020, 8(2): doi: 10.1002/advs.202003178.
|
10 |
CHU C X, LI R, CAI F P, et al. Recent advanced skeletons in sodium metal anodes[J]. Energy & Environmental Science, 2021, 14(8): doi: 10.1039/D1EE01341F.
|
11 |
ZHU M, ZHANG Y J, YU F F, et al. Stable sodium metal anode enabled by an interface protection layer rich in organic sulfide salt[J]. Nano Letters, 2021, 21(1): 619-627.
|
12 |
WANG L, SHANG J, HUANG Q Y, et al. Smoothing the sodium-metal anode with a self-regulating alloy interface for high-energy and sustainable sodium-metal batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(41): doi: 10.1002/adma.202102802.
|
13 |
XU C X, YANG Y L, WANG H P, et al. Electrolytes for lithium- and sodium-metal batteries[J]. Chemistry, an Asian Journal, 2020, 15(22): 3584-3598.
|
14 |
LEE Y, LEE J, LEE J, et al. Fluoroethylene carbonate-based electrolyte with 1 M sodium bis(fluorosulfonyl)imide enables high-performance sodium metal electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 15270-15280.
|
15 |
FERDOUSI S A, O'DELL L A, HILDER M, et al. SEI formation on sodium metal electrodes in superconcentrated ionic liquid electrolytes and the effect of additive water[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5706-5720.
|
16 |
RAKOV D A, CHEN F, FERDOUSI S A, et al. Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes[J]. Nature Materials, 2020, 19(10): 1096-1101.
|
17 |
ZHENG J M, CHEN S R, ZHAO W G, et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes[J]. ACS Energy Letters, 2018, 3(2): 315-321.
|
18 |
BORODIN O, SELF J, PERSSON K A, et al. Uncharted waters: Super-concentrated electrolytes[J]. Joule, 2020, 4(1): 69-100.
|