1 |
FAMPRIKIS T, CANEPA P, DAWSON J A, et al. Fundamentals of inorganic solid-state electrolytes for batteries[J]. Nature Materials, 2019, 18(12): 1278-1291.
|
2 |
STRUZIK M, GARBAYO I, PFENNINGER R, et al. A simple and fast electrochemical CO2 sensor based on Li7La3Zr2O12 for environmental monitoring[J]. Advanced Materials, 2018, 30(44): doi: 10.1002/adma.201804098.
|
3 |
WEDIG A, LUEBBEN M, CHO D Y, et al. Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems[J]. Nature Nanotechnology, 2016, 11(1): 67-74.
|
4 |
LIN Y, FANG S, SU D, et al. Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7824.
|
5 |
JANEK J, ZEIER W G. A solid future for battery development[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.141.
|
6 |
GAO Y R, NOLAN A M, DU P, et al. Classical and emerging characterization techniques for investigation of ion transport mechanisms in crystalline fast ionic conductors[J]. Chemical Reviews, 2020, 120(13): 5954-6008.
|
7 |
LAU J, DEBLOCK R H, BUTTS D M, et al. Sulfide solid electrolytes for lithium battery applications[J]. Advanced Energy Materials, 2018, 8(27): doi: 10.1002/aenm.201800933.
|
8 |
GAO Z H, SUN H B, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): doi: 10.1002/adma.201705702.
|
9 |
BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162.
|
10 |
WU J F, ZHANG R, FU Q F, et al. Inorganic solid electrolytes for all-solid-state sodium batteries: Fundamentals and strategies for battery optimization[J]. Advanced Functional Materials, 2021, 31(13): doi: 10.1002/adfm.202008165.
|
11 |
GUO X, WASER R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria[J]. Progress in Materials Science, 2006, 51(2): 151-210.
|
12 |
WU J F, GUO X. Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3 xLa0.67– xTiO3[J]. Physical Chemistry Chemical Physics, 2017, 19(8): 5880-5887.
|
13 |
TENHAEFF W E, RANGASAMY E, WANG Y Y, et al. Resolving the grain boundary and lattice impedance of hot-pressed Li7La3Zr2O12 garnet electrolytes[J]. ChemElectroChem, 2014, 1(2): 375-378.
|
14 |
KAWAI H, KUWANO J. Lithium ion conductivity of A-site deficient perovskite solid solution La0.67- x Li3 x TiO3[J]. Journal of the Electrochemical Society, 1994, 141(7): L78-L79.
|
15 |
WU J F, CHEN E Y, YU Y, et al. Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542-1552.
|
16 |
WANG Q, WU J F, LU Z H, et al. Solid electrolytes: A new lithium-ion conductor LiTaSiO5: Theoretical prediction, materials synthesis, and ionic conductivity[J]. Advanced Functional Materials, 2019, 29(37): doi: 10.1002/adfm.201904232.
|
17 |
MOON C K, LEE H J, PARK K H, et al. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2504-2512.
|
18 |
THANGADURAI V, WEPPNER W. Li6ALa2Ta2O12(A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112.
|
19 |
GUO X, PITHAN C, OHLY C, et al. Enhancement of p-type conductivity in nanocrystalline BaTiO3 ceramics[J]. Applied Physics Letters, 2005, 86(8): doi: 10.1063/1.1864232.
|
20 |
CHEN C H, AMINE K. Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate[J]. Solid State Ionics, 2001, 144(1/2): 51-57.
|
21 |
KUBICEK M, WACHTER-WELZL A, RETTENWANDER D, et al. Oxygen vacancies in fast lithium-ion conducting garnets[J]. Chemistry of Materials, 2017, 29(17): 7189-7196.
|
22 |
WOLFENSTINE J, ALLEN J L, READ J, et al. Chemical stability of cubic Li7La3Zr2O12 with molten lithium at elevated temperature[J]. Journal of Materials Science, 2013, 48(17): 5846-5851.
|
23 |
GREGORI G, MERKLE R, MAIER J. Ion conduction and redistribution at grain boundaries in oxide systems[J]. Progress in Materials Science, 2017, 89: 252-305.
|
24 |
SASANO S, ISHIKAWA R, SÁNCHEZ-SANTOLINO G, et al. Atomistic origin of Li-ion conductivity reduction at (Li3 xLa2/3- x)TiO3 grain boundary[J]. Nano Letters, 2021, 21(14): 6282-6288.
|
25 |
GUO X, ZHANG Z L. Grain size dependent grain boundary defect structure: Case of doped zirconia[J]. Acta Materialia, 2003, 51(9): 2539-2547.
|
26 |
GUO X. Can we achieve significantly higher ionic conductivity in nanostructured zirconia? [J]. Scripta Materialia, 2011, 65(2): 96-101.
|
27 |
SATA N, EBERMAN K, EBERL K, et al. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures[J]. Nature, 2000, 408(6815): 946-949.
|
28 |
MAIER J. Ionic conduction in space charge regions[J]. Progress in Solid State Chemistry, 1995, 23(3): 171-263.
|
29 |
HARUYAMA J, SODEYAMA K, HAN L Y, et al. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery[J]. Chemistry of Materials, 2014, 26(14): 4248-4255.
|
30 |
WU J F, GUO X. Size effect in nanocrystalline lithium-ion conducting perovskite: Li0.30La0.57TiO3[J]. Solid State Ionics, 2017, 310: 38-43.
|
31 |
GUO X, VASCO E, MI S B, et al. Ionic conduction in zirconia films of nanometer thickness[J]. Acta Materialia, 2005, 53(19): 5161-5166.
|
32 |
GUO X, MI S B, WASER R. Nonlinear electrical properties of grain boundaries in oxygen ion conductors: Acceptor-doped ceria[J]. Electrochemical and Solid-State Letters, 2005, 8(1): doi: 10.1149/1.1830393.
|