Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 77-86.doi: 10.19799/j.cnki.2095-4239.2020.0205
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xi LI1(), Yajuan YU1(), Zhiqi ZHANG1, Lei WANG1, Kai HUANG2
Received:
2020-06-08
Revised:
2020-08-04
Online:
2021-01-05
Published:
2021-01-08
Contact:
Yajuan YU
E-mail:lnaslixi@163.com;04575@bit.edu.cn
CLC Number:
Xi LI, Yajuan YU, Zhiqi ZHANG, Lei WANG, Kai HUANG. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J]. Energy Storage Science and Technology, 2021, 10(1): 77-86.
Table 1
Patent main applicant"
排名 | 申请人 | 专利数量/件 | 占总数比例/% |
---|---|---|---|
1 | TOYOTA JIDOSHA KK (丰田株式会社) | 293 | 11.47 |
2 | FUJI FILM CORP(富士胶片株式会社) | 134 | 5.24 |
3 | MURATA MFG CO LTD(村田株式会社) | 82 | 3.21 |
4 | IDEMITSU KOSAN CO LTD (出光兴产株式会社) | 61 | 2.39 |
5 | HITACHI ZOSEN CORP (日立造船株式会社) | 47 | 1.84 |
6 | NGK INSULATORS LTD(NGK绝缘子株式会社) | 45 | 1.76 |
7 | PANASONIC INTELLECTUAL PROPERTY MANAGEME (松下知识产权管理) | 45 | 1.76 |
8 | TOYOTA MOTOR CORP (日本丰田汽车公司) | 45 | 1.76 |
9 | TDK CORP (TDK株式会社) | 40 | 1.57 |
10 | SAMSUNG ELECTRONICS CO LTD (三星电子有限公司) | 38 | 1.49 |
Table 2
Technical field distribution of solid electrolyte patent applications"
序号 | IPC | 技术领域 | 数量 |
---|---|---|---|
1 | H01M-010/0562 | 二次电解质,电解质为固体材料 | 1067 |
2 | H01M-010/052 | 锂二次蓄电池 | 763 |
3 | H01M-004/62 | 活性物质中非活性材料成分的选择,例如胶合剂、填料 | 579 |
4 | H01M-010/0525 | 摇椅式电池,即两个电极插入或嵌入有锂的电池;锂离子电池 | 517 |
5 | H01M-010/0585 | 只具有板条结构元件,即板条式正极、负极、隔离件的蓄电池 | 418 |
6 | H01M-004/13 | 非水电解质蓄电池的电极;其制造方法 | 348 |
7 | H01B-001/06 | 主要由其他非金属物质组成的导体或导电物体 | 311 |
8 | H01M-010/058 | 非水电解质(H01M-010/39优先)构造或制造 | 283 |
9 | H01M-004/36 | 作为活性物质、活性体、活性液体的材料选择 | 249 |
10 | H01M-010/0565 | 高分子有机材料,例如凝胶或固体型的锂蓄电池 | 235 |
1 | 刘鲁静, 贾志军, 郭强等. 全固态锂离子电池技术进展及现状[J]. 过程工程学报, 2019, 19(5): 900-909. |
2 | CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons[J]. Mater Horiz, 2016, 3: 487-516. |
3 | 李杨, 丁飞, 桑林, 等. 全固态锂离子电池关键材料研究进展[J]. 储能科学与技术, 2016, 5(5): 615-626. |
LI Yang, DING Fei, SANG Lin, et al. A review of key materials for all-solid-state lithium ion batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 615-626. | |
4 | MAUGER A, JULIEN C, PAOLELLA A, et al. Building better batteries in the solid state: A review[J]. Materials, 2019, 12: doi: 10.3390/ma12233892. |
5 | JITTI K, BRUCE P. All-solid-state batteries and their remaining challenges[J]. Johnson Matthey Technology Review, 2018, 62(2): 177-180. |
6 | WAN J, XIE J, KONG X, et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nano-porous host for lithium batteries[J]. Nature Nanotechnology, 2019, 14(7): 705-711. |
7 | COMMARIEU B, PAOLELLA A. Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries[J]. Journal of Power Sources, 2019, 436: doi: 10.1016/j.jpowsour.2019.226852. |
8 | SHIM J, KIM L, KIM H, et al. All-solid-state lithium metal battery with solid polymer electrolytes based on polysiloxane crosslinked by modified natural gallic acid[J]. Polymer, 2017, 122: 222-231. |
9 | LIU K, ZHANG Q, THAPALIYA B, et al. In situ polymerized succinonitrile-based solid polymer electrolytes for lithium ion batteries[J]. Solid State Ionics, 2020, 345: doi: 10.1016/j.ssi.2019.115159. |
10 | DIRICAN M, YAN C, ZHU P, et al. Composite solid electrolytes for all-solid-state lithium batteries[J]. Materials Science and Engineering, 2018, 136: 27-46. |
11 | SUN C, LIU J, GONG Y, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. |
12 | LEO C, SUBBA R, CHOWDARI B. Studies on plasticized PEO-lithium triflate-ceramic filler composite electrolyte system[J]. Solid State Ionics, 2002, 148(1/2): 159-171. |
13 | LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Letters, 2015, 15(4): 2740-2745. |
14 | CHEN S, WANG J, ZHANG Z, et al. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries[J]. Journal of Power Sources, 2018, 387(31): 72-80. |
15 | 马丹丹. 聚合物电解质的合成在锂离子电池中的应用研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所), 2018. |
16 | YUE H, LI J, WANG Q, et al. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 268-274. |
17 | 刘明珠. 锂电池用新型聚硅氧烷基固体电解质的制备及其性能研究[D]. 杭州: 浙江大学, 2018. |
18 | LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem, 2014, 7(7): 1901-1908. |
19 | LIU M, JIN B, ZHANG Q, et al. High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane[J]. Journal of Alloys & Compounds, 2018, 742: 619-628. |
20 | LIU J, XU J, LIN Y, et al. All-solid-state lithium ion battery: research and industrial prospects[J]. Acta Chimica Sinica, 2013, 71(6): 869-878. |
21 | 吕晓娟, 孟繁丽, 吴亚楠. 钙钛矿型固体锂离子电解质的研究进展[J]. 中国陶瓷, 2019, 55(4): 1-6. |
22 | LU J, LI Y, DING Y. Structure, stability, and ionic conductivity of perovskite Li2x-ySr1-x-yLayTiO3 solid electrolytes[J]. Ceramics International, 2019, 46: 7741-7747. |
23 | HU Z, SHENG J, CHEN J, et al. Enhanced Li-ion conductivity in Ge-doped Li0.33La0.56TiO3 perovskite solid electrolytes for all-solid-state Li-ion batteries[J]. New Journal of Chemistry, 2018, 42: 9074-9079. |
24 | WANG S, DING Y, ZHOU G, et al. Durability of the Li1+xTi2-xAlx(PO4)3 solid electrolyte in lithium-sulfur batteries[J]. ACS Energy Letters, 2016, 1(6): 1080-1085. |
25 | LAI Y, SUN Z, JIANG L, et al. Rapid sintering of ceramic solid electrolytes LiZr2(PO4)3 and Li1.2Ca0.1Zr1.9(PO4)3 using a microwave sintering process at low temperatures[J]. Ceramics International, 2019, 45: 11068-11072. |
26 | TAN G, FENG W, LI L, et al. Magnetron sputtering preparation of nitrogen-incorporated lithium-aluminum-titanium phosphate based thin film electrolytes for all-solid-state lithium ion batteries[J]. Journal of Physical Chemistry C, 2012, 116(5): 3817-3826. |
27 | GAI J, ZHAO E, MA F, et al. Improving the Li-ion conductivity and air stability of cubic Li7La3Zr2O12 by the co-doping of Nb, Y on the Zr site[J]. Journal of the European Ceramic Society, 2018, 38(4): 1673-1678. |
28 | GIDEON A, INGO B, JULIAN S. One-pot synthesis of polymeric LiPON[J]. Polymer, 2020, 192: doi: 10.1016/j.polymer.2020.122300. |
29 | SUZUKI N, INABA T, SHIGA T. Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O[J]. Thin Solid Films, 2012, 520(6): 1821-1825. |
30 | CHEN S, XIE D, LIU G, et al. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application[J]. Energy Storage Materials, 2018, 14: 58-74. |
31 | WU Z, XIE Z, YOSHIDA A, et al. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 367-385. |
32 | HU P, ZHANG Y, CHI X, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9672-9678. |
33 | CHEN S, WEN K, FAN J, et al. Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: From liquid to solid electrolytes[J]. Journal of Materials Chemistry A, 2018, 6(25): 11631-11663. |
34 | WU Z, XIE Z, YOSHIDA A, et al. Novel SeS2 doped Li2S-P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries[J]. Chemical Engineering Journal, 2019, 380: 122-132. |
35 | CENGIZ M, OH H, LEE S. Lithium dendrite growth suppression and ionic conductivity of Li2S-P2S5-P2O5 glass solid electrolytes prepared by mechanical milling[J]. Journal of the Electrochemical Society, 166(16): A3997-A4004. |
36 | LU P, DING F, XU Z, et al. Study on (100-x)(70Li2S -30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2017, 356: 163-171. |
37 | UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211: 42-45. |
38 | XU R, XIA X, WANG X, et al. Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2829-2834. |
39 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
40 | ZHANG Q, HU J, CHU Y, et al. Electrochemical performance of sulfide solid electrolyte Li10GeP2S12 synthesized by a new method[J]. Materials Letters, 2019, 248: 153-156. |
41 | SUN Y, YAN W, AN L, et al. A facile strategy to improve the electrochemical stability of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Solid State Ionics, 2017, 301: 59-63. |
42 | ZHANG Y, CHEN R, LIU T, et al. High capacity and superior cyclic performances of all-solid-state lithium batteries enabled by a glass-ceramics solo[J]. ACS Applied Materials & Interfaces, 2018, doi: 10.1021/acsami.7b18211. |
43 | 张波, 崔光磊, 刘志宏, 等. 无机固态锂电池专利分析[J]. 储能科学与技术, 2017, 6(2): 307-315. |
ZHANG Bo, CUI Guanglei, LIU Zhihong, et al. Patentmetrics on lithium-ion battery based on inorganic solid electrolyte[J]. Energy Storage Science and Technology, 2017, 6(2): 307-315. | |
44 | 芮雯奕, 姜疆, 宋海燕, 等. 固态锂电池全球专利分析[J]. 电池, 2018, 48(6): 417-420. |
RUI Wenyi, JIANG Jiang, SONG Haiyan, et al. Global patent analysis on solid-state lithium battery[J]. Battery Bimonthly, 2018, 48(6): 417-420. | |
45 | 王琳, 陈万朋, 庄卫东, 等. 全固态锂电池专利申请现状及发展趋势分析[J]. 电源技术, 2018, 42(3): 455-458. |
WANG Lin, CHEN Wangpeng, ZHUANG Weidong, et al. Current status and development trends of patent application in all solid state lithium battery[J]. Chinese Journal of Power Sources, 2018, 42(3): 455-458. |
[1] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[2] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[3] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[4] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[5] | Wenting JIN, Mansheng LIAO, Ji HUANG, Zidong WEI. The technological trend of high energy density Li-ion batteries for vehicles [J]. Energy Storage Science and Technology, 2022, 11(1): 350-358. |
[6] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[7] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[8] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[9] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[10] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[11] | Peng GAO, Shan ZHANG, Liubin BEN, Wenwu ZHAO, Zhongzhu LIU, Rogerio RIBAS, Yongming ZHU, Xuejie HUANG. Application of niobium in lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1443-1453. |
[12] | Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308. |
[13] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[14] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[15] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||