Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1300-1308.doi: 10.19799/j.cnki.2095-4239.2020.0120
Previous Articles Next Articles
Shu GAO1(), Min ZHOU2, Jing HAN2, Cong GUO1, Yuan TAN1, Kai JIANG2, Kangli WANG2
Received:
2020-03-25
Revised:
2020-04-07
Online:
2020-09-05
Published:
2020-09-08
CLC Number:
Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308.
Table 1
Comparison of ionic conductivities and cycle numbers of solid polymer electrolyte in various cell systems"
电解质材料 | 测试温度/℃ | 电导率/S·cm-1 | 测试体系 | 循环圈数 | 参考文献 |
---|---|---|---|---|---|
PEO/NaTf | 90 | — | Na||Na0.9CO2 | 300 | [ |
P(EO)20/NaFSI | 80 | 4.1×10-4 | Na||Na0.67Ni0.33MnO2 | 50 | [ |
Na||Na3V2(PO4)3 | 30 | ||||
PVA/NaBr | 30 | 1.362×10-6 | Na||I2 | — | [ |
PTMC/NaTFSI | 60 | >10-6 | Na||PB | 8 | [ |
PEO/Na-CMC/NaClO4 | 60 | >10-5 | Na||NaFePO4 | 20 | [ |
PEO/TiO2/NaClO4 | 60 | 2.62×10-5 | Na||Na2/3Co2/3Mn1/3O2 | 25 | [ |
PMA/PEG/NaClO4/α-Al2O3 | 70 | 1.46×10-4 | Na||Na3V2(PO4)3 | 350 | [ |
PEO/PEG/NaClO4 | 30 | 3.4×10-6 | Na||MnO2 | — | [ |
PCL/PTMC/NaFSI | 22 | 3.9×10-6 | HC||Na2-xFe(Fe(CN)6) | 120 | [ |
PFSA/Na+ | 25 | 1.59×10-4 | Na||PB | 160 | [ |
B-PCPE | 20 | 3.6×10-4 | HC|| NaNi1/3Fe1/3Mn1/3O2 | 120 | [ |
Table 2
Comparison of ionic conductivities and cycle numbers of gel polymer electrolyte in various test cell systems"
电解质材料 | 电导率/S·cm-1 | 测试体系 | 循环圈数 | 参考文献 |
---|---|---|---|---|
GF-PA-PVDF-HFP/PC/NaClO4 | 5.4×10-3 | Na||Na2MnFe(CN)6 | 100 | [ |
NW/PVDF-HFP/NaClO4/EC-DMC-EMC | 8.2×10-4 | Na||Na4Mn9O8 | — | [ |
P(AN-MA)/NaClO4/PC | 1.8×10-3 | Na||Na3V2(PO4)3 | 700 | [ |
GF/PVDF-HFP/NaClO4/EC-PC | 3.8×10-3 | Na||HC | 100 | [ |
PVDF-HFP/NaClO4/FEC-PC | — | HC||VOPO4 | 100 | [ |
PVDF-HFP/NaClO4/PC-FEC | 4.2×10-4 | HC||Na3V2(PO4)2O2F | 500 | [ |
PVDF-HFP-GF/NaClO4/EC-PC | 4.1×10-3 | Na||HC | 100 | [ |
BEMA-PEGMA/NaClO4/PC | 5.1×10-4 | Na||TiO2 | 60 | [ |
PEO-NaClO4-PC | >10-4 | Na||TiO2 | 1000 | [ |
PMMA/PC/FEC/NaClO4 | 6.2×10-3 | Sb||Na3V2(PO4)3 | 100 | [ |
PAN/NaClO4/EC-PC-DME | 3.01×10-3 | Na||PI | 3000 | [ |
PFSA-Na/EC-PC | >10-4 | Na||Na0.44MnO2 | 50 | [ |
PFSA-Na/EC-PC | 2.8×10-4 | Na||Na0.67Ni0.23Mg0.1Mn0.67O2 | 1000 | [ |
PVDF-NaPA/EC-DMC | 9.1×10-5 | Na||Na3V2(PO4)3 | 65 | [ |
PSTB-PVCA/PET/PC-DEC | 1×10-4 | Na||Na3V2(PO4)3 | 200 | [ |
PSA/TEGDVE/NaClO4/PC | 1.2×10-3 | MoS2||Na3V2(PO4)3 | 1000 | [ |
P(MVE-alt-MA)/NaClO4/TEP-VC/BC | 2.2×10-4 | Na||Na3V2(PO4)3 | 1000 | [ |
HAP/PVDF-HFP/PBMA/NaClO4/EC-PC | 1.086×10-3 | Na||Na3V2(PO4)3 | 500 | [ |
PDDATFSI/C1-4TFSI/EMITFSI | >10-3 | Na||Na0.9(Cu0.22Fe0.3Mn0.48)O2 | 100 | [ |
PDADMAC-TFSI/C3mpyr-FSI/Al2O3/NaFSI | 1.6×10-3 | Na||NaFePO4 | 60 | [ |
1 | YANG J, ZHANG H, ZHOU Q, et al. Safety-enhanced polymer electrolytes for sodium batteries: Recent progress and perspectives[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17109-17127. |
2 | FENTON D. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589-595. |
3 | CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1075-1101. |
4 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Poly (ethylene oxide)-sodium perchlorate electrolytes in solid-state sodium cells[J]. British Polymer Journal, 1988, 20(3): 243-246. |
5 | OSMAN Z, ISA K B M, AHMAD A, et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics, 2010, 16(5): 431-435. |
6 | BOSCHIN A, JOHANSSON P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries[J]. Electrochimica Acta, 2015, 175: 124-133. |
7 | VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer-SiO2 nanohybrids: Na+ electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(29): 8348-8352. |
8 | KUMAR D, HASHMI S. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. Solid State Ionics, 2010, 181(8/9/10): 416-423. |
9 | EVANS J, VINCENT C A, BRUCE P G. Electrochemical measurement of transference numbers in polymer electrolytes[J]. Polymer, 1987, 28(13): 2324-2328. |
10 | KUMAR D, HASHMI S. Ion transport and ion-filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles[J]. Journal of Power Sources, 2010, 195(15): 5101-5108. |
11 | MA Y, DOEFF M M, VISCO S J, et al. Rechargeable Na/NaxCoO2 and Na15Pb4/NaxCoO2 polymer electrolyte cells[J]. Journal of the Electrochemical Society, 1993, 140(10): 2726-2733. |
12 | QI X, MA Q, LIU L, et al. Sodium bis(fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolytes for sodium-ion batteries[J]. ChemElectroChem, 2016, 3(11): 1741-1745. |
13 | BHARGAV P B, MOHAN V, SHARMA A, et al. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications[J]. Journal of Applied Polymer Science, 2008, 108(1): 510-517. |
14 | MINDEMARK J, MOGENSEN R, SMITH M J, et al. Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries[J]. Electrochemistry Communications, 2017, 77: 58-61. |
15 | COL F, BELLA F, NAIR J R, et al. Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries[J]. Electrochimica Acta, 2015, 174: 185-190. |
16 | NI'MAH Y L, CHENG M Y, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. |
17 | ZHANG X, WANG X, LIU S, et al. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries[J]. Nano Research, 2018, 11(12): 6244-6251. |
18 | CHANDRASEKARAN R, SELLADURAI S. Preparation and characterization of a new polymer electrolyte (PEO: NaClO3) for battery application[J]. Journal of Solid State Electrochemistry, 2001, 5(5): 355-361. |
19 | NGELAND S C, YOUNESI R, MINDEMARK J, et al. Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes[J]. Energy Storage Materials, 2019, 19: 31-38. |
20 | DU G, TAO M, LI J, et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode[J]. Advanced Energy Materials, 2020, 10(5): 1903351-1903358. |
21 | CHEN S, FENG F, YIN Y, et al. Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries[J]. Energy Storage Materials, 2019, 22: 57-65. |
22 | GAO H, GUO B, SONG J, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235-1402242. |
23 | ZHU Y, YANG Y, FU L, et al. A porous gel-type composite membrane reinforced by nonwoven: Promising polymer electrolyte with high performance for sodium ion batteries[J]. Electrochimica Acta, 2017, 224: 405-411. |
24 | LONCHAKOVA O, SEMENIKHIN O, ZAKHARKIN M, et al. Efficient gel-polymer electrolyte for sodium-ion batteries based on poly (acrylonitrile-co-methyl acrylate)[J]. Electrochimica Acta, 2020, 334: doi: 10.1016/j.electacta.2019.135512. |
25 | KIM J I, CHOI Y, CHUNG K Y, et al. A structurable gel-polymer electrolyte for sodium ion batteries[J]. Advanced Functional Materials, 2017, 27(34): 1701768-1701774. |
26 | LI H, DING Y, HA H, et al. An all-stretchable-component sodium-ion full battery[J]. Advanced Materials, 2017, 29(23): 1700898-1700904. |
27 | GUO J Z, YANG A B, GU Z Y, et al. Quasi-solid-state sodium-ion full battery with high-power/energy densities[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17903-17910. |
28 | KIM J I, CHUNG K Y, PARK J H. Design of a porous gel polymer electrolyte for sodium ion batteries[J]. Journal of Membrane Science, 2018, 566: 122-128. |
29 | BELLA F, COL F, NAIR J R, et al. Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries[J]. ChemSusChem, 2015, 8(21): 3668-3676. |
30 | COL F, BELLA F, NAIR J R, et al. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries[J]. Journal of Power Sources, 2017, 365: 293-302. |
31 | GAO H, ZHOU W, PARK K, et al. A sodium‐ion battery with a low‐cost cross-linked gel-polymer electrolyte[J]. Advanced Energy Materials, 2016, 6(18): 1600467-1600474. |
32 | MANUEL J, ZHAO X, CHO K K, et al. Ultralong life organic sodium ion batteries using a polyimide/multiwalled carbon nanotubes nanocomposite and gel polymer electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8159-8166. |
33 | CAO C, LIU W, TAN L, et al. Sodium-ion batteries using ion exchange membranes as electrolytes and separators[J]. Chemical Communications, 2013, 49(100): 11740-11742. |
34 | HOU H, XU Q, PANG Y, et al. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery[J]. Advanced Science, 2017, 4(8): 1700072-1700076. |
35 | PAN Q, LI Z, ZHANG W, et al. Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly [bis (4-carbonyl benzene sulfonyl) imide-co-2, 5-diamino benzesulfonic acid] polymer electrolyte[J]. Solid State Ionics, 2017, 300: 60-66. |
36 | WANG P, ZHANG H, CHAI J, et al. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries[J]. Solid State Ionics, 2019, 337: 140-146. |
37 | ZHANG J, WEN H, YUE L, et al. In situ formation of polysulfonamide supported poly (ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries[J]. Small, 2017, 13(2): 1601530-1601540. |
38 | YANG J, ZHANG M, CHEN Z, et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability[J]. Nano Research, 2019, 12(9): 2230-2237. |
39 | SAROJA A P V K, ARUNKUMAR R, MOHARANA B C, et al. Design of porous calcium phosphate based gel polymer electrolyte for quasi-solid state sodium ion battery[J]. Journal of Electroanalytical Chemistry, 2020, 859: doi: 10.1016/j.jelechem.2020.113864. |
40 | ZHOU D, LIU R, ZHANG J, et al. In situ synthesis of hierarchical poly (ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries[J]. Nano Energy, 2017, 33: 45-54. |
41 | DE ANASTRO A F, LAGO N, BERLANGA C, et al. Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery[J]. Journal of Membrane Science, 2019, 582: 435-441. |
42 | ZHONG L, LU Y, LI H, et al. High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7761-7768. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[7] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[8] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[14] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
[15] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||