Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1300-1308.doi: 10.19799/j.cnki.2095-4239.2020.0120
Previous Articles Next Articles
					
													Shu GAO1( ), Min ZHOU2, Jing HAN2, Cong GUO1, Yuan TAN1, Kai JIANG2, Kangli WANG2
), Min ZHOU2, Jing HAN2, Cong GUO1, Yuan TAN1, Kai JIANG2, Kangli WANG2
												  
						
						
						
					
				
Received:2020-03-25
															
							
																	Revised:2020-04-07
															
							
															
							
																	Online:2020-09-05
															
							
																	Published:2020-09-08
															
						CLC Number:
Shu GAO, Min ZHOU, Jing HAN, Cong GUO, Yuan TAN, Kai JIANG, Kangli WANG. Progress on polymer electrolyte in sodium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1300-1308.
 
													
													Table 1
Comparison of ionic conductivities and cycle numbers of solid polymer electrolyte in various cell systems"
| 电解质材料 | 测试温度/℃ | 电导率/S·cm-1 | 测试体系 | 循环圈数 | 参考文献 | 
|---|---|---|---|---|---|
| PEO/NaTf | 90 | — | Na||Na0.9CO2 | 300 | [ | 
| P(EO)20/NaFSI | 80 | 4.1×10-4 | Na||Na0.67Ni0.33MnO2 | 50 | [ | 
| Na||Na3V2(PO4)3 | 30 | ||||
| PVA/NaBr | 30 | 1.362×10-6 | Na||I2 | — | [ | 
| PTMC/NaTFSI | 60 | >10-6 | Na||PB | 8 | [ | 
| PEO/Na-CMC/NaClO4 | 60 | >10-5 | Na||NaFePO4 | 20 | [ | 
| PEO/TiO2/NaClO4 | 60 | 2.62×10-5 | Na||Na2/3Co2/3Mn1/3O2 | 25 | [ | 
| PMA/PEG/NaClO4/α-Al2O3 | 70 | 1.46×10-4 | Na||Na3V2(PO4)3 | 350 | [ | 
| PEO/PEG/NaClO4 | 30 | 3.4×10-6 | Na||MnO2 | — | [ | 
| PCL/PTMC/NaFSI | 22 | 3.9×10-6 | HC||Na2-xFe(Fe(CN)6) | 120 | [ | 
| PFSA/Na+ | 25 | 1.59×10-4 | Na||PB | 160 | [ | 
| B-PCPE | 20 | 3.6×10-4 | HC|| NaNi1/3Fe1/3Mn1/3O2 | 120 | [ | 
 
													
													Table 2
Comparison of ionic conductivities and cycle numbers of gel polymer electrolyte in various test cell systems"
| 电解质材料 | 电导率/S·cm-1 | 测试体系 | 循环圈数 | 参考文献 | 
|---|---|---|---|---|
| GF-PA-PVDF-HFP/PC/NaClO4 | 5.4×10-3 | Na||Na2MnFe(CN)6 | 100 | [ | 
| NW/PVDF-HFP/NaClO4/EC-DMC-EMC | 8.2×10-4 | Na||Na4Mn9O8 | — | [ | 
| P(AN-MA)/NaClO4/PC | 1.8×10-3 | Na||Na3V2(PO4)3 | 700 | [ | 
| GF/PVDF-HFP/NaClO4/EC-PC | 3.8×10-3 | Na||HC | 100 | [ | 
| PVDF-HFP/NaClO4/FEC-PC | — | HC||VOPO4 | 100 | [ | 
| PVDF-HFP/NaClO4/PC-FEC | 4.2×10-4 | HC||Na3V2(PO4)2O2F | 500 | [ | 
| PVDF-HFP-GF/NaClO4/EC-PC | 4.1×10-3 | Na||HC | 100 | [ | 
| BEMA-PEGMA/NaClO4/PC | 5.1×10-4 | Na||TiO2 | 60 | [ | 
| PEO-NaClO4-PC | >10-4 | Na||TiO2 | 1000 | [ | 
| PMMA/PC/FEC/NaClO4 | 6.2×10-3 | Sb||Na3V2(PO4)3 | 100 | [ | 
| PAN/NaClO4/EC-PC-DME | 3.01×10-3 | Na||PI | 3000 | [ | 
| PFSA-Na/EC-PC | >10-4 | Na||Na0.44MnO2 | 50 | [ | 
| PFSA-Na/EC-PC | 2.8×10-4 | Na||Na0.67Ni0.23Mg0.1Mn0.67O2 | 1000 | [ | 
| PVDF-NaPA/EC-DMC | 9.1×10-5 | Na||Na3V2(PO4)3 | 65 | [ | 
| PSTB-PVCA/PET/PC-DEC | 1×10-4 | Na||Na3V2(PO4)3 | 200 | [ | 
| PSA/TEGDVE/NaClO4/PC | 1.2×10-3 | MoS2||Na3V2(PO4)3 | 1000 | [ | 
| P(MVE-alt-MA)/NaClO4/TEP-VC/BC | 2.2×10-4 | Na||Na3V2(PO4)3 | 1000 | [ | 
| HAP/PVDF-HFP/PBMA/NaClO4/EC-PC | 1.086×10-3 | Na||Na3V2(PO4)3 | 500 | [ | 
| PDDATFSI/C1-4TFSI/EMITFSI | >10-3 | Na||Na0.9(Cu0.22Fe0.3Mn0.48)O2 | 100 | [ | 
| PDADMAC-TFSI/C3mpyr-FSI/Al2O3/NaFSI | 1.6×10-3 | Na||NaFePO4 | 60 | [ | 
| 1 | YANG J, ZHANG H, ZHOU Q, et al. Safety-enhanced polymer electrolytes for sodium batteries: Recent progress and perspectives[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17109-17127. | 
| 2 | FENTON D. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589-595. | 
| 3 | CHE H, CHEN S, XIE Y, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1075-1101. | 
| 4 | WEST K, ZACHAU-CHRISTIANSEN B, JACOBSEN T, et al. Poly (ethylene oxide)-sodium perchlorate electrolytes in solid-state sodium cells[J]. British Polymer Journal, 1988, 20(3): 243-246. | 
| 5 | OSMAN Z, ISA K B M, AHMAD A, et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics, 2010, 16(5): 431-435. | 
| 6 | BOSCHIN A, JOHANSSON P. Characterization of NaX (X: TFSI, FSI)-PEO based solid polymer electrolytes for sodium batteries[J]. Electrochimica Acta, 2015, 175: 124-133. | 
| 7 | VILLALUENGA I, BOGLE X, GREENBAUM S, et al. Cation only conduction in new polymer-SiO2 nanohybrids: Na+ electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(29): 8348-8352. | 
| 8 | KUMAR D, HASHMI S. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. Solid State Ionics, 2010, 181(8/9/10): 416-423. | 
| 9 | EVANS J, VINCENT C A, BRUCE P G. Electrochemical measurement of transference numbers in polymer electrolytes[J]. Polymer, 1987, 28(13): 2324-2328. | 
| 10 | KUMAR D, HASHMI S. Ion transport and ion-filler-polymer interaction in poly (methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles[J]. Journal of Power Sources, 2010, 195(15): 5101-5108. | 
| 11 | MA Y, DOEFF M M, VISCO S J, et al. Rechargeable Na/NaxCoO2 and Na15Pb4/NaxCoO2 polymer electrolyte cells[J]. Journal of the Electrochemical Society, 1993, 140(10): 2726-2733. | 
| 12 | QI X, MA Q, LIU L, et al. Sodium bis(fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolytes for sodium-ion batteries[J]. ChemElectroChem, 2016, 3(11): 1741-1745. | 
| 13 | BHARGAV P B, MOHAN V, SHARMA A, et al. Characterization of poly(vinyl alcohol)/sodium bromide polymer electrolytes for electrochemical cell applications[J]. Journal of Applied Polymer Science, 2008, 108(1): 510-517. | 
| 14 | MINDEMARK J, MOGENSEN R, SMITH M J, et al. Polycarbonates as alternative electrolyte host materials for solid-state sodium batteries[J]. Electrochemistry Communications, 2017, 77: 58-61. | 
| 15 | COL F, BELLA F, NAIR J R, et al. Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries[J]. Electrochimica Acta, 2015, 174: 185-190. | 
| 16 | NI'MAH Y L, CHENG M Y, CHENG J H, et al. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries[J]. Journal of Power Sources, 2015, 278: 375-381. | 
| 17 | ZHANG X, WANG X, LIU S, et al. A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries[J]. Nano Research, 2018, 11(12): 6244-6251. | 
| 18 | CHANDRASEKARAN R, SELLADURAI S. Preparation and characterization of a new polymer electrolyte (PEO: NaClO3) for battery application[J]. Journal of Solid State Electrochemistry, 2001, 5(5): 355-361. | 
| 19 | NGELAND S C, YOUNESI R, MINDEMARK J, et al. Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes[J]. Energy Storage Materials, 2019, 19: 31-38. | 
| 20 | DU G, TAO M, LI J, et al. Low-operating temperature, high-rate and durable solid-state sodium-ion battery based on polymer electrolyte and Prussian blue cathode[J]. Advanced Energy Materials, 2020, 10(5): 1903351-1903358. | 
| 21 | CHEN S, FENG F, YIN Y, et al. Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries[J]. Energy Storage Materials, 2019, 22: 57-65. | 
| 22 | GAO H, GUO B, SONG J, et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Advanced Energy Materials, 2015, 5(9): 1402235-1402242. | 
| 23 | ZHU Y, YANG Y, FU L, et al. A porous gel-type composite membrane reinforced by nonwoven: Promising polymer electrolyte with high performance for sodium ion batteries[J]. Electrochimica Acta, 2017, 224: 405-411. | 
| 24 | LONCHAKOVA O, SEMENIKHIN O, ZAKHARKIN M, et al. Efficient gel-polymer electrolyte for sodium-ion batteries based on poly (acrylonitrile-co-methyl acrylate)[J]. Electrochimica Acta, 2020, 334: doi: 10.1016/j.electacta.2019.135512. | 
| 25 | KIM J I, CHOI Y, CHUNG K Y, et al. A structurable gel-polymer electrolyte for sodium ion batteries[J]. Advanced Functional Materials, 2017, 27(34): 1701768-1701774. | 
| 26 | LI H, DING Y, HA H, et al. An all-stretchable-component sodium-ion full battery[J]. Advanced Materials, 2017, 29(23): 1700898-1700904. | 
| 27 | GUO J Z, YANG A B, GU Z Y, et al. Quasi-solid-state sodium-ion full battery with high-power/energy densities[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 17903-17910. | 
| 28 | KIM J I, CHUNG K Y, PARK J H. Design of a porous gel polymer electrolyte for sodium ion batteries[J]. Journal of Membrane Science, 2018, 566: 122-128. | 
| 29 | BELLA F, COL F, NAIR J R, et al. Photopolymer electrolytes for sustainable, upscalable, safe, and ambient-temperature sodium-ion secondary batteries[J]. ChemSusChem, 2015, 8(21): 3668-3676. | 
| 30 | COL F, BELLA F, NAIR J R, et al. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries[J]. Journal of Power Sources, 2017, 365: 293-302. | 
| 31 | GAO H, ZHOU W, PARK K, et al. A sodium‐ion battery with a low‐cost cross-linked gel-polymer electrolyte[J]. Advanced Energy Materials, 2016, 6(18): 1600467-1600474. | 
| 32 | MANUEL J, ZHAO X, CHO K K, et al. Ultralong life organic sodium ion batteries using a polyimide/multiwalled carbon nanotubes nanocomposite and gel polymer electrolyte[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8159-8166. | 
| 33 | CAO C, LIU W, TAN L, et al. Sodium-ion batteries using ion exchange membranes as electrolytes and separators[J]. Chemical Communications, 2013, 49(100): 11740-11742. | 
| 34 | HOU H, XU Q, PANG Y, et al. Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery[J]. Advanced Science, 2017, 4(8): 1700072-1700076. | 
| 35 | PAN Q, LI Z, ZHANG W, et al. Single ion conducting sodium ion batteries enabled by a sodium ion exchanged poly [bis (4-carbonyl benzene sulfonyl) imide-co-2, 5-diamino benzesulfonic acid] polymer electrolyte[J]. Solid State Ionics, 2017, 300: 60-66. | 
| 36 | WANG P, ZHANG H, CHAI J, et al. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries[J]. Solid State Ionics, 2019, 337: 140-146. | 
| 37 | ZHANG J, WEN H, YUE L, et al. In situ formation of polysulfonamide supported poly (ethylene glycol) divinyl ether based polymer electrolyte toward monolithic sodium ion batteries[J]. Small, 2017, 13(2): 1601530-1601540. | 
| 38 | YANG J, ZHANG M, CHEN Z, et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability[J]. Nano Research, 2019, 12(9): 2230-2237. | 
| 39 | SAROJA A P V K, ARUNKUMAR R, MOHARANA B C, et al. Design of porous calcium phosphate based gel polymer electrolyte for quasi-solid state sodium ion battery[J]. Journal of Electroanalytical Chemistry, 2020, 859: doi: 10.1016/j.jelechem.2020.113864. | 
| 40 | ZHOU D, LIU R, ZHANG J, et al. In situ synthesis of hierarchical poly (ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries[J]. Nano Energy, 2017, 33: 45-54. | 
| 41 | DE ANASTRO A F, LAGO N, BERLANGA C, et al. Poly(ionic liquid) iongel membranes for all solid-state rechargeable sodium battery[J]. Journal of Membrane Science, 2019, 582: 435-441. | 
| 42 | ZHONG L, LU Y, LI H, et al. High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7761-7768. | 
| [1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. | 
| [2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. | 
| [3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. | 
| [4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. | 
| [5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. | 
| [6] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. | 
| [7] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. | 
| [8] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. | 
| [9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. | 
| [10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. | 
| [11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. | 
| [12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. | 
| [13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. | 
| [14] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. | 
| [15] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
