Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1472-1488.doi: 10.19799/j.cnki.2095-4239.2020.0135
• Energy Storage Materials and Devices • Previous Articles Next Articles
Jie WU(), Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG()
Received:
2020-04-07
Revised:
2020-05-01
Online:
2020-09-05
Published:
2020-09-08
Contact:
Weiping TANG
E-mail:WuJieMYB@163.com;tangwp@sina.cn
CLC Number:
Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488.
1 | ZHANG S G, UENO K, DOKKO K, et al. Recent advances in electrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500117-1500144. |
2 | TAKADA K. Progress in solid electrolytes toward realizing solid-state lithium batteries[J]. Journal of Power Sources, 2018, 394: 74-85. |
3 | FAN Lei, WEI Shuya, LI Siyuan, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries[J]. Advanced Energy Materials, 2018, 8(11): 1702657-1702687. |
4 | ZHENG Feng, KOTOBUKI M, SONG Shufeng, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
5 | SUN Chunwen, LIU Jin, GONG Yudong, et al. Recent advances in all-solid-state rechargeable lithium batteries[J]. Nano Energy, 2017, 33: 363-386. |
6 | YAO Xiayin, HUANG Bingxin, YIN Jingyun, et al. All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science[J]. Chinese Physics B, 2016, 25(1): doi: 10.1088/1674-1056/25/1/018802. |
7 | ZHANG Zhizhen, SHAO Yuanjun, LOSTCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
8 | DOKKO K, HOSHINA K, NAKANO H, et al. Preparation of LiMn2O4 thin-film electrode on Li1+xAlxTi2-x(PO4)3 NASICON-type solid electrolyte[J]. Journal of Power Sources, 2007, 174(2): 1100-1103. |
9 | CHEN Chunhua, XIE Song, SPERLING E, et al. Stable lithium-ion conducting perovskite lithium-strontium-tantalum-zirconium-oxide system[J]. Solid State Ionics, 2004, 167(3/4): 263-272. |
10 | RAMAKUMAR S, DEVIANNAPOORANI C, GHIVYA L, et al. Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications[J]. Progress in Materials Science, 2017, 88: 325-411. |
11 | NAGATA H, CHIKUSA Y. Activation of sulfur active material in an all-solid-state lithium-sulfur battery[J]. Journal of Power Sources, 2014, 263: 141-144. |
12 | ARBI K, ROJO J M, SANZ J. Lithium mobility in titanium based NASICON Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy[J]. Journal of the European Ceramic Society, 2007, 27(13/14/15): 4215-4218. |
13 | ZHAO Yusheng, DAEMEN L L. Superionic conductivity in lithium-rich anti-perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047. |
14 | HAN Xiaogang, GONG Yunhui, FU Kun, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
15 | LUO Wei, GONG Yunhui, ZHU Yizhou, et al. Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte[J]. Journal of the American Chemical Society, 2016, 138(37): 12258-12262. |
16 | WANG Chengwei, GONG Yunhui, LIU Boyang, et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
17 | BROEK J VAN DEN, AFYON S, RUPP J L M, et al. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Advanced Energy Materials, 2016, 6(19): doi: 10.1002/adma.201600736. |
18 | NAGAO M, HAYASHI A, TATSUMISAGO M, et al. Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte[J]. Electrochemistry, 2012, 80(10): 734-736. |
19 | ZHANG Zhihua, ZHAO Yanran, CHEN Shaojie, et al. An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life[J]. Journal of Materials Chemistry A, 2017, 5(32): 16984-16993. |
20 | SAKUDA A, HAYASHI A, TATSUMISAGO M, et al. Intefacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy[J]. Chemistry of Materials, 2010, 22(3): 949-956. |
21 | KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. Journal of Power Sources, 2014, 260: 292-298. |
22 | FU Kun, GONG Yunhui, LIU Boyang, et al. Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface[J]. Science Advances, 2017, 3(4): 1601659-1601669. |
23 | XU Kang. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
24 | KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nature Materials, 2011, 10(9): 682-686. |
25 | KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.30. |
26 | MURAMATSU H, HAYASHI A, OHTOMO T, et al. Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere[J]. Solid State Ionics, 2011, 182(1): 116-119. |
27 | BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction[J]. Chemical Reviews, 2016, 116(1): 140-162. |
28 | LARRAZ G, ORERA A, SANJUAN M L. Cubic phases of garnet-type Li7La3Zr2O12: The role of hydration[J]. Journal of Materials Chemistry A, 2013, 1 (37): 11419-11428. |
29 | XIA Wenhao, XU Biyi, DUAN Huanan, et al. Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5335-5342. |
30 | XIA Wenhao, XU Biyi, DUAN Huanan, et al. Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2[J]. Journal of the American Ceramic Society, 2017, 100(7): 2832-2839. |
31 | KOTOBUKI M, KOISHI M. Influence of precursor calcination temperature on sintering and conductivity of Li1.5Al0.5Ti1.5(PO4)3 ceramics[J]. Journal of Asian Ceramic Societies, 2019, 7(1): 69-74. |
32 | MERTENS A, YU Shicheng, SCHON N, et al. Superionic bulk conductivity in Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Solid State Ionics, 2017, 309: 180-186. |
33 | AONO H, SUGIMOTO E, SADAOKA Y, et al. Ionic conductivity of the lithium titanium phosphate [Li1+xMxTi2-x(PO4)3, M=Al, Sc, Y, and La] systems[J]. Journal of the Electrochemical Society, 1989, 136(2): 590-591. |
34 | ZHANG P, MATSUI M, TAKEDA Y, et al. Water-stable lithium ion conducting solid electrolyte of iron and aluminum doped NASICON-type LiTi2(PO4)3[J]. Solid State Ionics, 2014, 263: 27-32. |
35 | DASHJAV E, MA Qianli, XU Qu, et al. The influence of water on the electrical conductivity of aluminum-substituted lithium titanium phosphates[J]. Solid State Ionics, 2018, 321: 83-90. |
36 | XIAO Wei, WANG Jingyu, FAN Linlin, et al. Recent advances in Li1+xAlxTi2-x(PO4)3 solid-state electrolyte for safe lithium batteries[J]. Energy Storage Materials, 2019, 19: 379-400. |
37 | ZHAI Haowei, XU Pengyu, NING Mingqiang, et al. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries[J]. Nano Letters, 2017, 17(5): 3182-3187. |
38 | BAN Xiaoyao, ZHANG Wenqiang, CHEN Ning, et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery[J]. The Journal of Physical Chemistry C, 2018, 122(18): 9852-9858. |
39 | LI Dan, CHEN Long, WANG Tianshi, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7069-7078. |
40 | BONIZZONI S, FERRARA, C, BERBENNI, V, et al. NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries[J]. Physical Chemistry Chemical Physics, 2019, 21(11): 6142-6149. |
41 | LIU Lehao, CHU Lihua, JIANG Bing, et al. Li1.4Al0.4Ti1.6(PO4)3 nanoparticle-reinforced solid polymer electrolytes for all-solid-state lithium batteries[J]. Solid State Ionics, 2019, 331: 89-95. |
42 | PAN Kecheng, ZHANG Lan, QIAN Weiwei, et al. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Advanced Materials, 2020, 32(17): doi: 10.1002/adma.202000399. |
43 | 余涛, 谢凯, 韩喻, 等. PEO基Li1.5Al0.5Ge1.5(PO4)3固体复合电解质的制备[J]. 储能科学与技术, 2015, 4(3): 273-277. |
YU Tao, XIE Kai, HAN Yu, et al. Preparation and characterization of PEO based Li1.5Al0.5Ge1.5(PO4)3 solid composite electrolyte[J]. Energy Storage Science and Technology, 2015, 4(3): 273-277. | |
44 | 赵宁, 李忆秋, 郭向欣, 等. 纳米锂镧锆钽氧粉体复合聚氧化乙烯制备的固态电解质电化学性能的研究[J]. 储能科学与技术, 2016, 5(5): 754-761. |
ZHAO Ning, LI Yiqiu, GUO Xiangxin, et al. Electrochemical performance of solid state electrolytes consisting of Li6.4La3Zr1.4Ta0.6O1.2 nanopowders dispersed in polyethylene oxides[J]. Energy Storage Science and Technology, 2016, 5(5): 754-761. | |
45 | HONG H Y P, GOODENOUGH J B. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1975, 11(2): 173-182. |
46 | PARK H, KANG M, PARK Y C, et al. Improving ionic conductivity of NASICON (Na3Zr2Si2PO12) at intermediate temperatures by modifying phase transition behavior[J]. Journal of Power Sources, 2018, 399: 329-336. |
47 | MOUAHID F E, BETTACH M, ZAHIR M, et al. Crystal chemistry and ion conductivity of the Na1+xTi2-xAlx(PO4)3 (0≤x≤0.9) NASICON series[J]. Journal of Materials Chemistry, 2000, 10(12): 2748-2757. |
48 | MA Qianli, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. |
49 | KAZAKEVICIUS E, KEZIONIS A, ZUKAUSKAITE L, et al. Characterization of Na1.3Al0.3Zr1.7(PO4)3 solid electrolyte ceramics by impedance spectroscopy[J]. Solid State Ionics, 2015, 271: 128-133. |
50 | BRADTMULLER H, NIETO-MUNOZ A M, ORTIZ-MOSQUERA J F, et al. Glass-to-crystal transition in the NASICON glass-ceramic system Na1+xAlxM2-x(PO4)3 (M=Ge, Ti)[J]. Journal of Non-Crystalline Solids, 2018, 489: 91-101. |
51 | LI Yutao, LIU Meijing, LIU Kai, et al. High Li+ conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature[J]. Journal of Power Sources, 2013, 240: 50-53. |
52 | WEISS M, WEBER D A, WENYSHYN A, et al. Correlating transport and structural properties in Li1+xAlxGe2-x(PO4)3 (LAGP) prepared from aqueous solution[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10935-10944. |
53 | ZANGINA T, HASSAN J, AZIS R S, et al. Analysis of thermal and electrical conductivity properties of Al substitution LiHf2(PO4)3 chemical solid electrolyte[J]. SN Applied Sciences, 2019, 1(8): doi: 10.1007/S42452-019-0901-x. |
54 | CHAKIR M, JAZOULI A EL, DE WAAL D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates[J]. Journal of Solid State Chemistry, 2006, 179(6): 1883-1891. |
55 | ARBI K, BUCHELI W, JIMENEZ R, et al. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M=Ti, Ge and 0≤x≤0.5)[J]. Journal of the European Ceramic Society, 2015, 35(5): 1477-1484. |
56 | TAKADA K, TANSHO M, YANASE I, et al. Lithium ion conduction in LiTi2(PO4)3[J]. Solid State Ionics, 2001, 139: 241-247. |
57 | HE Shengnan, XU Youlong, ZHANG Baofeng, et al. Unique rhombus-like precursor for synthesis of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte with high ionic conductivity[J]. Chemical Engineering Journal, 2018, 345: 483-491. |
58 | FRANCISCO B E, STOLDT C R. Lithium-ion trapping from local structural distortions in sodium super ionic conductor (NASICON) electrolytes[J]. Chemistry of Materials, 2014, 26: 4741-4749. |
59 | MONCHAK M, HUPFER T, SENYSHYN A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor[J]. Inorganic Chemistry, 2016, 55(6): 2941-2945. |
60 | REDHAMMER G J, RETTENWANDER D, PRISTAT S, et al. A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0≤x≤0.5) crystals: Implications on ionic conductivity[J]. Solid State Sciences, 2016, 60: 99-107. |
61 | ARBI K, HOELZEL M, KUHN A, et al. Structural factors that enhance lithium mobility in fast-ion Li1+xTi2-xAlx(PO4)3 (0≤x≤0.4) conductors investigated by neutron diffraction in the temperature range 100~500 K[J]. Inorganic Chemistry, 2013, 52(16): 9290-9296. |
62 | PEREZ-ESTEBANEZ M, ISASI-MARIN J, TOBBENS D M, et al. A systematic study of NASICON-type Li1+xMxTi2-x(PO4)3 (M: Cr, Al, Fe) by neutron diffraction and impedance spectroscopy[J]. Solid State Ionics, 2014, 266: 1-8. |
63 | BUCHARSKY E C, SCHELL K G, HINTENNACH A, et al. Preparation and characterization of sol-gel derived high lithium ion conductive NZP-type ceramics Li1+xAlxTi2-x(PO4)3[J]. Solid State Ionics, 2015, 274: 77-82. |
64 | HUANG Lezhi, WEN Zhaoyin, WU Meifen, et al. Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method[J]. Journal of Power Sources, 2011, 196(16): 6943-6946. |
65 | ARBI K, MANDAL S, ROJO J M, et al. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study[J]. Chemistry of Materials, 2002, 14(3): 1091-1097. |
66 | ADACHI G Y, IMANAKA N, AONO H. Fast Li+ conducting ceramic electrolytes[J]. Advanced Materials, 1996, 8(2): 127-135. |
67 | KOSOVA N, DEVYATKINA E, OSINTSEV D. Dispersed materials for rechargeable lithium batteries: reactive and non-reactive grinding[J]. Journal of Materials Science, 2004, 39(16/17): 5031-5036. |
68 | LU Xia, WANG Senhao, XIAO Ruijuan, et al. First-principles insight into the structural fundamental of super ionic conducting in NASICON MTi2(PO4)3 (M=Li, Na) materials for rechargeable batteries[J]. Nano Energy, 2017, 41: 626-633. |
69 | LANG B, ZIEBARTH B, ELSASSER C. Lithium ion conduction in LiTi2(PO4)3 and related compounds based on the NASICON structure: a first-principles study[J]. Chemistry of Materials, 2015, 27(14): 5040-5048. |
70 | EPP V, MA Q, HAMMER E M, et al. Very fast bulk Li ion diffusivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry[J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32115-32121. |
71 | HALLOPEAU L, BREGIROUX D, ROUSSE G, et al. Microwave-assisted reactive sintering and lithium ion conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte[J]. Journal of Power Sources, 2018, 378: 48-52. |
72 | HE Xingfeng, ZHU Yizhou, MO Yifei. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8: doi: 10.1038/ncomms15893. |
73 | WANG Qi, WU Jianfang, LU Ziheng, et al. A new lithium-ion conductor LiTaSiO5: Theoretical prediction, materials synthesis, and ionic conductivity[J]. Advanced Functional Materials, 2019, 29(37): doi: 10.1002/adfm.201904232. |
74 | ZHAO Erqing, MA Furui, JIN Yongcheng, et al. Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes: The effect of dispersant[J]. Journal of Alloys and Compounds, 2016, 680: 646-653. |
75 | KOTOBUKI M, KOISHI M, KATO Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics, 2013, 19(12): 1945-1948. |
76 | DULUARD S, PAILLASSA A, PUECH L, et al. Lithium conducting solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 obtained via solution chemistry[J]. Journal of the European Ceramic Society, 2013, 33(6): 1145-1153. |
77 | SCHELL K G, BUCHARSKY E C, LEMKE F, et al. Effect of calcination conditions on lithium conductivity in Li1.3Ti1.7Al0.3(PO4)3 prepared by sol-gel route[J]. Ionics, 2017, 23 (4): 821-827. |
78 | LIU Xingang, TAN Jiang, FU Ju, et al. Facile synthesis of nanosized lithium-ion-conducting solid electrolyte Li1.4Al0.4Ti1.6(PO4)3 and its mechanical nanocomposites with LiMn2O4 for enhanced cyclic performance in lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9 (13): 11696-11703. |
79 | KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceramics International, 2013, 39(4): 4645-4649. |
80 | SOMAN S, IWAI Y, KAWAMURA J, et al. Crystalline phase content and ionic conductivity correlation in LATP glass-ceramic[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1761-1766. |
81 | FU Jie. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5[J]. Solid State Ionics, 1997, 96(3/4): 195-200. |
82 | WANG Shaofei, Liubin BEN, LI Hong, et al. Identifying Li+ ion transport properties of aluminum doped lithium titanium phosphate solid electrolyte at wide temperature range[J]. Solid State Ionics, 2014, 268: 110-116. |
83 | KWATEK K, NOWINSKI J L. Electrical properties of LiTi2(PO4)3 and Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes containing ionic liquid[J]. Solid State Ionics, 2017, 302: 54-60. |
84 | ARBI K, LAZARRAGE M G, CHEHIMI D B, et al. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R=Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy[J]. Chemistry of Materials, 2004, 16(2): 255-262. |
85 | KOSOVA N V, DEVYATKINA E T, STEPANOV A P, et al. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2–xAlx(PO4)3 (x=0; 0. 3) prepared by mechanical activation[J]. Ionics, 2008, 14(4): 303-311. |
86 | NING Linjian, WU Yuping, FANG Shibi, et al. Materials prepared for lithium ion batteries by mechanochemical methods[J]. Journal of Power Sources, 2004, 133(2): 229-242. |
87 | KOSOVA N, DEVYATKINA E. On mechanochemical preparation of materials with enhanced characteristics for lithium batteries[J]. Solid State Ionics, 2004, 172(1/2/3/4): 181-184. |
88 | KOMIYA R, HAYASHI A, MORIMOTO H, et al. Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S·0.4SiS2)·xLi4SiO4 obtained by mechanochemical synthesis[J]. Solid State Ionics, 2001, 140(1/2): 83-87. |
89 | MORIMOTO H, HIRUKAWA M, MATSUMOTO A, et al. Lithium ion conductivities of NASICON-type Li1+xAlxTi2-x(PO4)3 solid electrolytes prepared from amorphous powder using a mechanochemical method[J]. Electrochemistry, 2014, 82(10): 870-874. |
90 | MORIMOTO H, AWANO H, TERESHIMA J, et al. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2-x(PO4)3 (x=0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell[J]. Journal of Power Sources, 2013, 240: 636-643. |
91 | BUCHARSKY E C, SCHELL K G, HUPFER T, et al. Thermal properties and ionic conductivity of Li1.3Ti1.7Al0.3(PO4)3 solid electrolytes sintered by field-assisted sintering[J]. Ionics, 2016, 22(7): 1043-1049. |
92 | WINAND J M, RULMONT A, TARTE E P. New solid solutions LI(MIV)2-x(NIV)x(PO4)3 (L=Li, Na M, N=Ge, Sn, Ti, Zr, Hf) synthesized and studied by X-ray diffraction and ionic conductivity[J]. Journal of Solid State Chemistry, 1991, 93(2): 341-349. |
93 | DELMAS C, NADIRI A, SOUBEYROUX J L. The NASICON-type titanium phosphates ATi2(PO4)3 (A=Li, Na) as electrode materials[J]. Solid State Ionics, 1988, 28/29/30: 419-423. |
94 | AONO H, SUGIMOTO E, SADAOKA Y, et al. Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3)[J]. Solid State lonics, 1991, 47: 257-264. |
95 | KOBAYASHI Y, TAKEUCHI T, TABUCHI M, et al. Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering[J]. Journal of Power Sources, 1999, 81: 853-858. |
96 | RETTENWANDER D, WELZL A, PRISTAT S, et al. A microcontact impedance study on NASICON-type Li1+xAlxTi2-x(PO4)3 (0≤x≤0.5) single crystals[J]. Journal of Materials Chemistry A, 2016, 4(4): 1506-1513. |
97 | JACKMAN S D, CUTLER R A. Effect of microcracking on ionic conductivity in LATP[J]. Journal of Power Sources, 2012, 218: 65-72. |
98 | HUPFER T, BUCHARSKY E C, SCHELL K G, et al. Influence of the secondary phase LiTiOPO4 on the properties of Li1+xAlxTi2-x(PO4)3 (x= 0; 0.3)[J]. Solid State Ionics, 2017, 302: 49-53. |
99 | HUPFER T, BUCHARSKY E C, SCHELL K G, et al. Evolution of microstructure and its relation to ionic conductivity in Li1+xAlxTi2-x(PO4)3[J]. Solid State Ionics, 2016, 288: 235-239. |
100 | WAETZIG K, ROST A, LANGKLOTZ U, et al. An explanation of the microcrack formation in Li1.3Al0.3Ti1.7(PO4)3 ceramics[J]. Journal of the European Ceramic Society, 2016, 36(8): 1995-2001. |
101 | YU Shicheng, MERTENS A, GAO X, et al. Influence of microstructure and AlPO4 secondary-phase on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid-state electrolyte[J]. Functional Materials Letters, 2016, 9(5): doi: 10.1142/S1793604716500661. |
102 | THOKCHOM J S, KUMAR B. The effects of crystallization parameters on the ionic conductivity of a lithium aluminum germanium phosphate glass-ceramic[J]. Journal of Power Sources, 2010, 195(9): 2870-2876. |
103 | KEY B, SCHROEDER D J, INGRAM B J, et al. Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries[J]. Chemistry of Materials, 2012, 24(2): 287-293. |
104 | WENZEL S, LEICHTWEISS T, KRUGER D. Interphase formation on lithium solid electrolytes — An in situ approach to study interfacial reactions by photoelectron spectroscopy[J]. Solid State Ionics, 2015, 278: 98-105. |
105 | KIM H S, OH Y, KANG K H, et al. Characterization of sputter-deposited LiCoO2 thin film grown on NASICON-type electrolyte for application in all-solid-state rechargeable lithium battery[J]. ACS Applied Materials & Interfaces, 2017, 9 (19): 16063-16070. |
106 | OHTA S, SEKI J, YAGI Y, et al. Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44. |
107 | GAO Zhonghui, SUN Huabin, FU Lin, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries[J]. Advanced Materials, 2018, 30(17): 1705702-1705728. |
108 | NAGATA K, NANNO T. All solid battery with phosphate compounds made through sintering process[J]. Journal of Power Sources, 2007, 174(2): 832-837. |
109 | HOFMANN P, WALTHER F, ROHNKE M, et al. LATP and LiCoPO4 thin film preparation-Illustrating interfacial issues on the way to all-phosphate SSBs[J]. Solid State Ionics, 2019, 342: 115054-115063. |
110 | GELLERT M, DASHJAV E, GRUNER D, et al. Compatibility study of oxide and olivine cathode materials with lithium aluminum titanium phosphate[J]. Ionics, 2018, 24(4): 1001-1006. |
111 | KATO T, YOSHIDA R, YAMAMOTO K, et al. Effects of sintering temperature on interfacial structure and interfacial resistance for all-solid-state rechargeable lithium batteries[J]. Journal of Power Sources, 2016, 325: 584-590. |
112 | HOSHINA K, YOSHIMA K, KOTOBUKI M, et al. Fabrication of LiNi0.5Mn1.5O4 thin film cathode by PVP sol-gel process and its app-lication of all-solid-state lithium ion batteries using Li1+xAlxTi2-x(PO4)3 solid electrolyte[J]. Solid State Ionics, 2012, 209/210: 30-35. |
113 | YU Shicheng, SCHMOHL S, LIU Zigeng, et al. Insights into a layered hybrid solid electrolyte and its application in long lifespan high-voltage all-solid-state lithium batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3882-3894. |
114 | LIANG Jiayan, ZENG Xianxiang, ZHANG Xudong, et al. Engineering Janus interfaces of ceramic electrolyte via distinct functional polymers for stable high-voltage Li-metal batteries[J]. Journal of the American Chemical Society, 2019, 141 (23): 9165-9169. |
115 | LIU Wei, MILCAREK R J, FALKENSTEIN-SMITH R L, et al. Interfacial impedance studies of multilayer structured electrolyte fabricated with solvent-casted PEO10-LiN(CF3SO2)2 and ceramic Li1.3Al0.3Ti1.7(PO4)3 and its application in all-solid-state lithium ion batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2016, 13(2): doi: 10.1115/1.4035294. |
116 | LIU Yulong, SUN Qian, ZHAO Yang, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition[J]. ACS Applied Materials & Interfaces, 2018, 10 (37): 31240-31248. |
117 | HARTMANN P, LEICHTWEISS T, BUSHE M R, et al. Degradation of NASICON-type materials in contact with lithium metal: Formation of mixed conducting interphases (MCI) on solid electrolytes[J]. Journal of Physical Chemistry C, 2013, 117(41): 21064-21074. |
118 | HAO Xiaoge, ZHAO Qiang, SU Shiming, et al. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid‐state lithium metal batteries[J]. Advanced Energy Materials, 2019, 9(34): 1901604-1901611. |
119 | BAI Hainan, HU Jiulin, DUAN Yusen, et al. Surface modification of Li1.3Al0.3Ti1.7(PO4)3 ceramic electrolyte by Al2O3-doped ZnO coating to enable dendrites-free all-solid-state lithium-metal batteries[J]. Ceramics International, 2019, 45(12): 14663-14668. |
120 | CHENG Qian, LI Aijun, LI Na, et al. Stabilizing solid electrolyte-anode interface in Li-metal batteries by boron nitride-based nanocomposite coating[J]. Joule, 2019, 3(6): 1510-1522. |
121 | ZHOU Weidong, WANG Shaofei, LI Yutao, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. Journal of the American Chemical Society, 2016, 138(30): 9385-9388. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[3] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[4] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[5] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[6] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[7] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[8] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[9] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[10] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[11] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[12] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[13] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[14] | DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends [J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||