Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 523-537.doi: 10.19799/j.cnki.2095-4239.2019.0286
Previous Articles Next Articles
JIANG Pengfeng1, SHI Yuansheng1, LI Kangwan1, HAN Baichuan2, YAN Liquan1, SUN Yang1, LU Xia1()
Received:
2019-12-26
Revised:
2020-01-05
Online:
2020-03-05
Published:
2020-03-15
Contact:
Xia LU
E-mail:luxia3@mail.sysu.edu.cn
CLC Number:
JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte[J]. Energy Storage Science and Technology, 2020, 9(2): 523-537.
1 | XU K . Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
2 | ESHETU G G , GRUGEON S , LARUELLE S , et al . In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9145-9155. |
3 |
JANEK J , ZEIER W G . A solid future for battery development[J]. Nature Energy, 2016, 1(9): 16141, doi: 10.1038/nenergy.2016.141 .
doi: 10.1038/nenergy.2016.141 |
4 |
MANTHIRAM A , YU X W , WANG S F . Lithium battery chemistries enabled by solid-state electrolytes[J]. Nature Reviews Materials, 2017, 2(4):16103. DOI: 10.1038/natrevmats.2016.103 .
doi: 10.1038/natrevmats.2016.103 |
5 | BRUCE P G , WEST A R . The A-C conductivity of polycrystalline LISICON, Li2+2 x Zn1- x GeO4, and a model for intergranular constriction resistances[J]. Journal of the Electrochemical Society, 1983, 130: 662-669. |
6 | KANNO R , MURAYAMA M . Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society, 2001, 148(42): A742-A746. |
7 | AONO H , SUGIMOTO E , SADAOKA N , et al . Ionic conductivity of solid electrolytes based on lithium titanium phosphate[J]. Journal of The Electrochemical Society, 1990, 137(4): 1023-1027. |
8 | MURUGAN R , THANGADURAI V , WEPPNER W . Fast lithium ion conduction in garnet-type Li7La3Zr2O12 [J]. Angewandte Chemie International Edition, 2007, 46: 7778-7781. |
9 | INAGUMA Y , CHEN L Q , ITOH M , et al . High ionic conductivity in lithium lanthanum titanate[J]. Solid State Communications, 1993, 86: 689-693. |
10 | ZHAO Y , DAEMEN L . Superionic conductivity in lithium-rich anti-perovskites[J]. Journal of the American Chemical Society, 2012, 134(36): 15042-15047. |
11 | MATSUO M , REMHOF A , MARTELLI P , et al . Complex hydrides with (BH4 -) and (NH2 -) anions as new lithium fast-ion conductors[J]. Journal of the American Chemical Society, 2009, 131(45): 16389-16391. |
12 | LUTZ H D , SCHMIDT W , HAEUSELER H . Chloride spinels: A new group of solid lithium electrolytes[J]. Journal of the Physics and Chemistry of Solids, 1981, 42(4): 287-289. |
13 | DEISEROTH H J , KONG S T , ECKERT H , et al . Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angewandte Chemie International Edition, 2008, 47(4): 755-758. |
14 | MIZUNO F , HAYASHI A , TADANAGA K , et al . New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Advanced Materials, 2005, 17(7): 918-921. |
15 | KONDO S , TAKADA K , YAMAMURA Y . New lithium ion conductors based on Li2S-SiS2 system[J]. Solid State Ionics, Diffusion & Reactions, 1992, 53-56 (part-P2): 1183-1186. |
16 | ALPEN U V , RABENAU A , TALAT G H . Ionic conductivity in Li3N single crystals[J]. Applied Physics Letters, 1977, 30(12): 621-623. |
17 | YU X , BATES J B , JELLISON G E , et al . A stable thin film lithium electrolyte: Lithium phosphorus oxynitride[J]. Journal of the Electrochemical Society, 1997, 28(22): 524-532. |
18 | KNAUTH P . Inorganic solid Li ion conductors: An overview[J]. Solid State Ionics, Diffusion & Reactions, 2009, 180 (14-16): 911-916. |
19 | THANGADURAI V , PINZARU D , NARAYANAN S , et al . Fast solid-state Li ion conducting garnet-type structure metal oxides for energy storage[J]. the Journal of Physical Chemistry Letters, 2015, 6(2): 292-299. |
20 | REN Y , CHEN K , CHEN R , et al . Oxide electrolytes for lithium batteries[J]. Journal of the American Ceramic Society, 2015, 98(12): 3603-3623. |
21 | FERGUS J W . Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2010, 195(15): 4554-4569. |
22 | THANGADURAI V , NARAYANAN S , PINZARU D . Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chemical Society Reviews, 2014, 45(34): 4714-4727. |
23 | LI Y , HAN J T , WANG C A , et al . Optimizing Li+ conductivity in a garnet framework[J]. Journal of Materials Chemistry, 2012, 22: 15357-15361. |
24 | DUAN H N , ZHENG H P , ZHOU Y , et al . Stability of garnet-type Li ion conductors: An overview[J]. Solid State Ionics, 2017, 318: 45-53. |
25 | THANGADURAI V , HOFSTETTER K . Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium[J]. Journal of Power Sources, 2018, 390: 297-312. |
26 | WELLS A F . Structure inorganic chemistry[M].4th edition. Oxford: Clarendon Press, 1975. |
27 | KASPER H M . Series of rare earth garnets Ln3+ 3M2Li+ 3O12 (M=Te, W) [J]. Inorganic Chemistry, 1969, 8(4): 1000-1002. |
28 | THANGADURAI V , KAACK H , WEPPNER W J F . Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta) [J]. ChemInform, 2003, 34(27): 437-440. |
29 | THANGADURAI V , WEPPNER W . Li6ALa2Ta2O12 (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction[J]. Advanced Functional Materials, 2005, 15(1): 107-112. |
30 | MURUGAN R , THANGADURAI V , WEPPNER W . Lattice parameter and sintering temperature dependence of bulk and grain-boundary conduction of garnet-like solid Li-electrolytes[J]. Journal of the Electrochemical Society, 2008, 155: A90-A101. |
31 | KAERIYAMA A , MUNAKATA H , KAJIHARA K , et al . Evaluation of electrochemical characteristics of Li7La3Zr2O12 solid electrolyte[J]. ECS Transactions, 2009, 16: 175-180. |
32 | XU M , PARK M S , LEE J M, et al . Mechanisms of Li+ transport in garnet-type cubic Li3+ x La3M2O12, (M=Te, Nb, Zr) [J]. Physical Review B, 2012, 85(5): 3711-3711. |
33 | MEESALA Y , JENA A , CHANG H , et al . Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries[J]. ACS Energy Letters, 2017, 2, (12): 2734-2751. |
34 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2015, 42(13): 1089-1097. |
35 | AWAKA J , TAKASHIMA A , KATAOKA K , et al . Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 40(1): 60-62. |
36 | TAN J J , TIWARI A . Synthesis of cubic phase Li7La3Zr2O12 electrolyte for solid-state lithium-ion batteries[J]. Electrochemical and Solid State Letters, 2012, 15(3): A37-A9. |
37 | KOTOBUKI M , MUNAKATA H , KANAMURA K , et al . Compatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode[J]. Journal of the Electrochemical Society, 2010, 157: A1076-A1079. |
38 | CUSSEN E J . The structure of lithium garnets: Cation disorder and clustering in a new family of fast Li+ conductors[J]. Cheminform, 2006, 37(15): 412-413. |
39 | HOU H M , CHENG L , RICHARDSON T , et al . Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS)[J]. Journal of Analytical Atomic Spectrometry, 2015, 30: 2295-2302. |
40 | ADAMS S , RAO R P . Ion transport and phase transition in Li7- x La3(Zr2- x M x )O12 (M=Ta5+, Nb5+, x=0, 0.25)[J]. Journal of Materials Chemistry, 2011, 22: 1426-1434. |
41 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of "Li7La3Zr2O12" garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50: 1089-1097. |
42 | KOKAL I I , SOMER M , NOTTEN P P , et al . Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structures[J]. Solid State Ionics, 2011, 185(1): 42-46. |
43 | LI Y , HAN J T , WANG C A , et al . Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 209: 278-281. |
44 | XIE H , LI Y , GOODENOUGH J B . Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure[J]. Materials Research Bulletin, 2012, 47(5): 1229-1232. |
45 | BUSCHMANN H , DOLLE J , BERENDTS S , et al . Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12” [J]. Physical Chemistry Chemical Physics, 2011, 13(43): 19378-19392. |
46 | AWAKA J , KIJIMA N , HAYAKAWA H , et al . Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure[J]. Journal of Solid State Chemistry, 2009, 182(8): 2046-2052. |
47 |
PERCIVAL J , KENDRICK E , SMITH R I , et al . Cation ordering in Li containing garnets: Synthesis and structural characterization of the tetragonal system, Li7La3Sn2O12 [J]. Dalton Transactions, 2009(26): 5177, DOI: 10.1039/b907331k .
doi: 10.1039/b907331k |
48 | WOLFENSTINE J , RANGASAMY E , ALLEN J L , et al . High conductivity of dense tetragonal Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 208: 193-196. |
49 | INADA R , KUSAKABE K , TANAKA T , et al . Synthesis and properties of Al-free Li7- x La3Zr2- x Ta x O12 garnet related oxides[J]. Solid State Ionics, 2014, 262: 568-572. |
50 | IL’INA E A , ANDREEV O L , ANTONOV B D , et al . Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods[J]. Journal of Power Sources, 2012, 201: 169-173. |
51 | RANGASAMY E , WOLFENSTINE J , ALLEN J , et al . The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7- x La3- x A x Zr2O12 garnet-based ceramic electrolyte[J]. Journal of Power Sources, 2013, 230: 261-266. |
52 | AWAKA J , TAKASHIMA A , KATAOKA K , et al . Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12 [J]. Cheminform, 2011, 40: 60-62. |
53 | XIE H , ALONSO J A , LI Y , et al . Lithium distribution in aluminum-free cubic Li7La3Zr2O12 [J]. ChemInform, 2011, 23(16): 3587-3589. |
54 | ABRAGAM A . The principles of nuclear magnetism[M]. Oxford: Clarendon Press, 1961, 28(4): 692-693. |
55 | O'CALLAGHAN M P , POWELL A S , TITMAN J J , et al . Switching on fast lithium ion conductivity in garnets: The structure and transport properties of Li3+ x Nd3Te2- x Sb x O12 [J]. Chemistry of Materials, 2008, 20(6): 2360-2369. |
56 | WÜLLEN L , ECHELMEYER T , MEYER H , et al . The mechanism of Li-ion transport in the garnet Li5La3Nb2O12 [J]. Physical Chemistry Chemical Physics, 2007, 9: 3298-3303. |
57 | WANG D , ZHONG G , PANG W K , et al . Towards Understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ions exchanges and their mobility at octahedral/tetrahedral sites[J]. Chemistry of Materials, 2015, 27: 6650-6659. |
58 | XU M , PARK M S , LEE J M, et al . Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12, (M=Te, Nb, Zr) [J]. Physical Review B, 2012, 85(5): 3711-3711. |
59 | JALEM R , YAMAMOTO Y , SHIIBA H , et al . Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12 [J]. Chemistry of Materials, 2013, 25(3): 425-430. |
60 | HE X F , ZHU Y Z , MO Y F . Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8, 15893: doi: 10.1038/ncomms15893. |
61 | WU J F , GUO X . Origin of the low grain boundary conductivity in lithium ion conducting perovskites: Li3 x La0.67- x TiO3 [J]. Physical Chemistry Chemical Physics, 2017, 19(8): 5880-5887. |
62 | MA C , CHEN K , LIANG C , et al . Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes [J]. Energy & Environmental Science, 2014, 7(5): 1638-1642. |
63 | YU S G , SIEGEL D J . Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO) [J]. Chemistry of Materials, 2017, 29(22): doi: 10.1021/acs.chemmater.7b02805. |
64 | DOBRETSOV E A , MATEYSHINA Y G , UVAROV N F . Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte [J]. Solid State Ionics, 2016, 299: 55-59. |
65 | RANGASAMY E , WOLFENSTINE J , SAKAMOTO J . The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 [J]. Solid State Ionics, 2012, 206: 28-32. |
66 |
THOMPSON T , SHARAFI A , JOHANNES M D , et al . A tale of two sites: On defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries[J]. Advanced Energy Materials, 2015, 5(11), 1500096: doi: 10.1002/aenm.201500096 .
doi: 10.1002/aenm.201500096 |
67 | BERNSTEIN N , JOHANNES M D , HOANG K . Origin of the structural phase transition in Li7La3Zr2O12 [J]. Physical Review Letters, 2012, 109(20): 205702. |
68 | THOMPSON T , WOLFENSTINE J , ALLEN J L , et al . Tetragonal vs. cubic phase stability in Al-free Ta doped Li7La3Zr2O12 (LLZO) [J]. Journal of Materials Chemistry A, 2014, 2(33): 13431-13436. |
69 | MIARA L J , RICHARDS W D , WANG Y E , et al . First-principles studies on cation dopants and electrolyte cathode interphases for lithium garnets [J]. Chemistry of Materials, 2015, 27(11): 4040-4047. |
70 | IL’INA E A , ANDREEV O L , ANTONOV B D , et al . Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods [J]. Journal of Power Sources, 2012, 201: 169-173. |
71 | RETTENWANDER D , REDHAMMER G , PREISHUBER-PFLüGL F , et al . Structural and electrochemical consequences of Al and Ga Co-substitution in Li7La3Zr2O12 solid electrolytes [J]. Chemistry of Materials, 2016, 28(7): 2384-2392. |
72 | RANGASAMY E , WOLFENSTINE J , SAKAMOTO J . The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12 [J]. Solid State Ionics, 2012, 206: 28-32. |
73 | SAKAMOTO J , RANGASAMY E , KIM H , et al . Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12 [J]. Nanotechnology, 2013, 24(42): 424005. |
74 | WU J F , CHEN E Y , YU Y , et al . Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1542- 1552. |
75 | BRUGGE R H , KILNER J A , AGUADERO A . Germanium as a donor dopant in garnet electrolyte [J]. Solid State Ionics, 2019, 337(154-160). |
76 | WAGNER R , REDHAMMER G J , RETTENWANDER D , et al . Fast Li-ion-conducting garnet-related Li7–3 x Fe x La3Zr2O12 with uncommon I4̅3d structure[J]. Chemistry of Materials, 2016, 28(16): 5943-5951. |
77 | RANGASAMY E , WOLFENSTINE J , ALLEN J , et al . The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7- x La3- x A x Zr2O12 garnet-based ceramic electrolyte [J]. J. Power Sources, 2013, 230: 261-266. |
78 | DUMON A , HUANG M , SHEN Y , et al . High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet [J]. Solid State Ionics, 2013, 243: 36-41. |
79 | HANC E , ZAJĄC W , MOLENDA J . Synthesis procedure and effect of Nd, Ca and Nb doping on structure and electrical conductivity of Li7La3Zr2O12 garnets [J]. Solid State Ionics, 2014, 262: 617-621. |
80 | DEVIANNAPOORANI C , SHANKAR L S , RAMAKUMAR S , et al . Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12 [J]. Ionics, 2016, 22(8): 1281-1289. |
81 | HAMAO N , KATAOKA K , KIJIMA N , et al . Synthesis, crystal structure and conductive properties of garnet-type lithium ion conductor Al-free Li7- x La3Zr2- X Ta x O12 (0 ≤ x≤ 0.6) [J]. Journal of the Ceramic Society of Japan, 2016, 124: 678-683. |
82 | OHTA S , KOBAYASHI T , ASAOKA T . High lithium ionic conductivity in the garnet-type oxide Li7- X La3(Zr2- X , Nb X )O12 (X = 0~2) [J]. J. Power Sources, 2011, 196(6): 3342-3345. |
83 | RAMAKUMAR S , SATYANARAYANA L , MANORAMA S V , et al . Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors[J]. Physical Chemistry Chemical Physics, 2013, 15(27): 11327-11338. |
84 | DEVIANNAPOORANI C , DHIVYA L , RAMAKUMAR S , et al . Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets[J]. Journal of Power Sources, 2013, 240: 18-25. |
85 | SHAO C , YU Z , LIU H , et al . Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte[J]. Electrochimica Acta, 2017, 225: 345-349. |
86 | DHIVYA L , JANANI N , PALANIVEL B , et al . Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium garnets[J]. AIP Advances, 2013, 3(8):082115. |
87 | LIU X , LI Y , YANG T , et al . High lithium ionic conductivity in the garnet-type oxide Li7-2 x La3Zr2- x Mo x O12 (x=0~0.3) ceramics by sol-gel method[J]. Journal of the American Ceramic Society, 2017, 100(4): 1527-1533. |
88 | SONG S , YAN B , ZHENG F , et al . Crystal structure, migration mechanism and electrochemical performance of Cr-stabilized garnet[J]. Solid State Ionics, 2014, 268: 135-139. |
89 | SONG S , CHEN B , RUAN Y , et al . Gd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-ion batteries[J]. Electrochimica Acta, 2018, 270: 501-508. |
90 | JIANG Y , ZHU X , QIN S , et al . Investigation of Mg2+, Sc3+ and Zn2+ doping effects on densification and ionic conductivity of low-temperature sintered Li7La3Zr2O12 garnets [J]. Solid State Ionics, 2017, 30: 73-77. |
91 | XIE H , LI Y , HAN J , et al ., Li6La3SnMO12 (M= Sb, Nb, Ta), a family of lithium garnets with high Li-ion conductivity[J]. Journal of the Electrochemical Society, 2012, 159: 1148-1151. |
92 | ALLEN J L , WOLFENSTINE J , RANGASAMY E , et al . Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J]. Journal of Power Sources, 2012, 206: 315-319. |
93 | BUANNIC L , ORAYECH B , J-MLóPEZ DEL AMO , et al . Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte[J]. Chemistry of Materials, 2017, 29(4): 1769-1778. |
94 | YANG T , LI Y , WU W , et al . The synergistic effect of dual substitution of Al and Sb on structure and ionic conductivity of Li7La3Zr2O12 [J]. Ceramic International, 2018, 44: 1538-1544. |
95 | CHEN X , WANG T , LU W , et al . Synthesis of Ta and Ca doped Li7La3Zr2O12 solid-state electrolyte via simple solution method and its application in suppressing shuttle effect of Li-S battery [J]. Journal of Alloys and Compounds, 2018, 74: 386-394. |
96 | LI Y , YANG T , WU W , et al . Effect of Al-Mo co-doping on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics[J]. Ionics, 2018, 24: 3305-3315. |
97 | OHTA S , SEKI J , YAGI Y , et al . Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery[J]. Journal of Power Sources, 2014, 265: 40-44. |
98 | WANG D , ZHONG G , DOLOTKO O , et al . The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes[J]. Journal of Materials Chemistry A, 2014, 2(47): 20271-20279. |
99 | GU W , EZBIRI M , PRASADA RAO R , et al . Effects of penta- and trivalent dopants on structure and conductivity of Li7La3Zr2O12 [J]. Solid State Ionics, 2015, 274: 100-105. |
100 | DOBRETSOV E A , MATEYSHINA Y G , UVAROV N F . Influence of lithium oxide excess and alumina on grain boundary resistance of Li6.75La3Zr1.75Nb0.25O12 solid electrolyte[J]. Solid State Ionics, 2017, 299: 55-59. |
101 | SHEN L W , WANG L , WANG Z , et al . Preparation and characterization of Ga and Sr co-doped Li7La3Zr2O12 garnet-type solid electrolyte[J]. Solid State Ionics, 2019, 339:114992. |
102 | WU J F , PANG W K , PETERSON V K , et al . Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Applied Materials &Interfaces, 2017, 9(14): 12461-12468. |
103 | HU M , PANG X , ZHOU Z . Recent progress in high-voltage lithium ion batteries[J]. Journal of Power Sources, 2013, 237: 229-242. |
104 | DHIVYA L , MURUGAN R . Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ Conductivity of Li7La3Zr2O12 lithium garnet[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 17606-17615. |
105 | KIHIRA Y , OHTA S , IMAGAWA H , et al . Effect of simultaneous substitution of alkali earth metals and Nb in Li7La3Zr2O12 on lithium-ion conductivity[J]. ECS Electrochemistry Letters, 2013, 2: A56-A59. |
106 | ZEIER W G . Structural limitations for optimizing garnet-type solid electrolytes: a perspective[J]. Dalton Transactions, 2014, 43(43): 16133-16138. |
107 | MUKHOPADHYAY S , THOMPSON T , SAKAMOTO J , et al . Structure and stoichiometry in supervalent doped Li7La3Zr2O12 [J]. Chemistry of Materials, 2015, 27(10): 3658-3665. |
108 | GEIGER C A , ALEKSEEV E , LAZIC B , et al . Crystal chemistry and stability of Li7La3Zr2O12 garnet: A fast lithium-ion conductor[J]. Inorganic Chemistry, 2011, 50(3): 1089-1097. |
109 | KOTOBUKI M , KANAMURA K , SATO Y , et al . Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte[J]. Journal of Power Sources, 2011, 196(18): 7750-7754. |
110 | RETTENWANDER D , BLAHA P , LASKOWSKI R , et al . DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet[J]. Chemistry of Materials, 2014, 26(8): 2617-2623. |
111 | RETTENWANDER D , LANGER J , SCHMIDT W , et al . Site occupation of Ga and Al in stabilized cubic Li7–3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields[J]. Chemistry of Materials, 2015, 27(8): 3135-3142. |
112 | JALEM R , RUSHTON M J D , MANALASTAS W , et al . Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes[J]. Chemistry of Materials, 2015, 27(8): 2821-2831. |
113 | HAN X , GONG Y , FU K , et al . Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nature Materials, 2017, 16(5): 572-579. |
114 | LUO W , GONG Y , ZHU Y , et al . Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer [J]. Advanced Materials, 2017, 29(22): 1606042. |
115 | SHARAFI A , KAZYAK E , DAVIS A L , et al . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
116 | WANG C , GONG Y , LIU B , et al . Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes[J]. Nano Letters, 2017, 17(1): 565-571. |
117 | HE M , CUI Z , CHEN C , et al . Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. Journal of Materials Chemistry A, 2018, 6(24): 11463-11470. |
118 | ZHAO N , FANG R , HE M H , et al . Cycle stability of lithium/garnet/lithium cells with different intermediate layers [J]. Rare Metals, 2018, 37: 473-479, 155. |
119 | DUAN J , WU W , NOLAN A M , et al . Solid-state batteries: Lithium–graphite paste: An interface compatible anode for solid-state batteries[J]. Advanced Materials, 2019, 31(10),1970068. |
120 | LI Y , CHEN X , DOLOCAN A , et al . Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. |
121 |
INADA R , YASUDA S , HOSOKAWA H , et al . Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode [J]. Batteries, 2018, 4(2), 26: doi: 10.3390/batteries4020026 .
doi: 10.3390/batteries4020026 |
122 | SHARAFI A , KAZYAK E , DAVIS A L , et al . Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12 [J]. Chemistry of Materials, 2017, 29(18): 7961-7968. |
123 | LI Y , XU B , XU H , et al . Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(3): 753-756. |
124 | OHTA S , KOBAYASHI T , SEKI J , et al . Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte [J]. Journal of Power Sources, 2012, 202: 332-335. |
125 | LIU B , FU K , GONG Y , et al . Rapid thermal annealing of cathode-garnet interface toward high-temperature solid state batteries[J]. Nano Letters, 2017, 17(8): 4917-4923. |
126 | PARK K , YU B C , JUNG J W , et al . Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: Interface between LiCoO2 and garnet-Li7La3Zr2O12 [J]. Chemistry of Materials, 2016, 28(21): 8051-8059. |
127 | FU K K , GONG Y , XU S , et al . Stabilizing the garnet solid-electrolyte/polysulfide interface in Li-S batteries [J]. Chemistry of Materials, 2017, 29(19): 8037-8041. |
128 | XIA W , XU B , DUAN H , et al . Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5335-5342. |
129 | LIU J , GAO X , HARTLEY G O , et al . The interface between Li6.5La3Zr1.5Ta0.5O12 and liquid electrolyte[J]. Joule, 2019: doi: 10.1016/j.joule.2019.10.001. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[3] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[4] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[5] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[6] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[7] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[8] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[9] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[10] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[11] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[12] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[13] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[14] | DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends [J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||