Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1284-1299.doi: 10.19799/j.cnki.2095-4239.2020.0119
Previous Articles Next Articles
Jing YANG1(), Gaozhan LIU1,2, Lin SHEN1,2, Xiayin YAO1,2()
Received:
2020-03-25
Revised:
2020-04-02
Online:
2020-09-05
Published:
2020-09-08
Contact:
Xiayin YAO
E-mail:yangjing@nimte.ac.cn;yaoxy@nimte.ac.cn
CLC Number:
Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299.
1 | PALOMARES V, SERRAS P, VILLALUENGA I, et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems[J]. Energy & Environmental Science, 2012, 5(3): 5884-5901. |
2 | 方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158. |
FANG Zheng, CAO Yuliang, HU Yongsheng, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 282-292. | |
3 | VIGNAROOBAN K, KUSHAGRA R, ELANGO A, et al. Current trends and future challenges of electrolytes for sodium-ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2829-2846. |
4 | PALOMARES V, CASAS-CABANAS M, CASTILLO-MART NEZ E, et al. Update on Na-based battery materials: A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337. |
5 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Yuesheng, RONG Xiaohui, XU Shuyin, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
6 | 朱娜, 吴锋, 吴川, 等. 钠离子电池的电解质[J]. 储能科学与技术, 2016, 5(3): 285-291. |
ZHU Na, WU Feng, WU Chuan, et al. Recent advances of electrolytes for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 285-291. | |
7 | 刘丽露, 戚兴国, 邵元骏, 等. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
LIU Lilu, QI Xingguo, SHAO Yuanjun, et al. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. | |
8 | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
9 | GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. |
10 | HONG H Y P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J]. Materials Research Bulletin, 1976, 11(2): 173-182. |
11 | MAZZA D. Modeling ionic conductivity in Nasicon structures[J]. Journal of Solid State Chemistry, 2001, 156(1): 154-160. |
12 | ANANTHARAMULU N, RAO K K, RAMBABU G, et al. A wide-ranging review on Nasicon type materials[J]. Journal of Materials Science, 2011, 46(9): 2821-2837. |
13 | JIAN Z, HU Y S, JI X, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): 1601925-1601940. |
14 | BUI K M, DINH V A, OKADA S, et al. Na-ion diffusion in a NASICON-type solid electrolyte: A density functional study[J]. Physical Chemistry Chemical Physics, 2016, 18(39): 27226-27231. |
15 | ZHANG Z, ZOU Z, KAUP K, et al. Correlated migration invokes higher Na+-ion conductivity in NASICON-type solid electrolytes[J]. Advanced Energy Materials, 2019, 9(42): 1902373-1902386. |
16 | ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries[J]. Journal of Power Sources, 2018, 389: 198-213. |
17 | JOLLEY A G, TAYLOR D D, SCHREIBER N J, et al. Structural investigation of monoclinic-rhombohedral phase transition in Na3Zr2Si2PO12 and doped NASICON[J]. Journal of the American Ceramic Society, 2015, 98(9): 2902-2907. |
18 | NAQASH S, TIETZ F, YAZHENSKIKH E, et al. Impact of sodium excess on electrical conductivity of Na3Zr2Si2PO12+xNa2O ceramics[J]. Solid State Ionics, 2019, 336: 57-66. |
19 | HE X, ZHU Y, MO Y. Origin of fast ion diffusion in super-ionic conductors[J]. Nature Communications, 2017, 8(1): 15893-15899. |
20 | 郑浩, 高健, 王少飞, 等. 锂电池基础科学问题(VI)—离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6): 620-635. |
ZHENG Hao, GAO Jian, WANG Shaofei, et al. Fundamental scientific aspects of lithium batteries (VI)—Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6): 620-635. | |
21 | GUIN M, TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. Journal of Power Sources, 2015, 273: 1056-1064. |
22 | HULL S. Superionics: Crystal structures and conduction processes[J]. Reports on Progress in Physics, 2004, 67(7): 1233-1314. |
23 | HOU W, GUO X, SHEN X, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
24 | 张舒, 王少飞, 凌仕刚, 等. 锂离子电池基础科学问题(X)—全固态锂离子电池[J]. 储能科学与技术, 2014, 3(4): 376-394. |
ZHANG Shu, WANG Shaofei, LING Shigang, et al. Fundamental scientific aspects of lithium ion batteries(X)—All-solid-state lithium-ion batteries[J]. Energy Storage Science and Technology, 2014, 3(4): 376-394. | |
25 | LUNGHAMMER S, MA Q, RETTENWANDER D, et al. Bulk and grain-boundary ionic conductivity in sodium zirconophosphosilicate Na3Zr2(SiO4)2PO4 (NASICON)[J]. Chemical Physics Letters, 2018, 701: 147-150. |
26 | LU Y, LI L, ZHANG Q, et al. Electrolyte and interface engineering for solid-state sodium batteries[J]. Joule, 2018, 2: 1-24. |
27 | MIYAJIMA Y, SAITO Y, MATSUOKA M, et al. Ionic conductivity of NASICON-type Na1+xMxZr2-xP3O12 (M: Yb, Er, Dy)[J]. Solid State Ionics, 1996, 84(1): 61-64. |
28 | AONO H, SUGINOTO E. Ionic conductivity and sinterability of NASICON-type ceramics: The systems NaM2(PO4)3+yNa2O (M=Ge, Ti, Hf, and Zr)[J]. Journal of the American Ceramic Society, 1996, 79(10): 2786-2788. |
29 | ABELLO L, CHHOR K, BARJ M, et al. Heat capacity and Na+ ion disorder in Nasicon-type solid electrolytes Na3M2P3O12 (M2= Fe2, Cr2, ZrMg) in the temperature range 10 to 300 K[J]. Journal of Materials Science, 1989, 24(9): 3380-3386. |
30 | SAITO Y, ADO K, ASAI T, et al. Ionic conductivity of NASICON-type conductors Na1.5M0.5Zr1.5(PO4)3 (M: Al3+, Ga3+, Cr3+, Sc3+, Fe3+, In3+, Yb3+, Y3+)[J]. Solid State Ionics, 1992, 58(3): 327-331. |
31 | MALDONADO-MANSO P, ARANDA M A G, BRUQUE S, et al. Nominal vs. actual stoichiometries in Al-doped NASICONs: A study of the Na1.4Al0.4M1.6(PO4)3 (M=Ge, Sn, Ti, Hf, Zr) family[J]. Solid State Ionics, 2005, 176(17/18): 1613-1625. |
32 | CHAKIR M, JAZOULI A EL, DE WAAL D. Synthesis, crystal structure and spectroscopy properties of Na3AZr(PO4)3 (A=Mg, Ni) and Li2.6Na0.4NiZr(PO4)3 phosphates[J]. Journal of Solid State Chemistry, 2006, 179(6): 1883-1891. |
33 | LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Advanced Energy Materials, 2019, 9(28): 1901205-1901213. |
34 | SAMIEE M, RADHAKRISHNAN B, RICE Z, et al. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases[J]. Journal of Power Sources, 2017, 347: 229-237. |
35 | MA Q, GUIN M, NAQASH S, et al. Scandium-substituted Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid-state reaction method as sodium-ion conductors[J]. Chemistry of Materials, 2016, 28(13): 4821-4828. |
36 | MA Q, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776. |
37 | GUIN M, TIETZ F, GUILLON O. New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na3+xSc2SixP3-xO12[J]. Solid State Ionics, 2016, 293: 18-26. |
38 | SONG S, DUONG H M, KORSUNSKY A M, et al. A Na+ superionic conductor for room-temperature sodium batteries[J]. Scientific Reports, 2016, 6: 32330-32339. |
39 | JOLLEY A G, COHN G, HITZ G T, et al. Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12[J]. Ionics, 2015, 21(11): 3031-3038. |
40 | RUAN Y, SONG S, LIU J, et al. Improved structural stability and ionic conductivity of Na3Zr2Si2PO12 solid electrolyte by rare earth metal substitutions[J]. Ceramics International, 2017, 43(10): 7810-7815. |
41 | VOGEL E M, CAVA R J, RIETMAN E. Na+ ion conductivity and crystallographic cell characterization in the Hf-Nasicon system Na1+xHf2SixP3-xO12[J]. Solid State Ionics, 1984, 14(1): 1-6. |
42 | BOGUSZ W, KROK F, JAKUBOWSKI W. Influence of doping on some physical properties of NASICON[J]. Solid State Ionics, 1983, 9/10: 803-807. |
43 | CHEN D, LUO F, ZHOU W, et al. Influence of Nb5+, Ti4+, Y3+ and Zn2+ doped Na3Zr2Si2PO12 solid electrolyte on its conductivity[J]. Journal of Alloys and Compounds, 2018, 757: 348-355. |
44 | WANG W, LIU X. Study on sodium fast ion conductors in the Na1+3xAlxHf2-xSi2xP3-2xO12 system[J]. Solid State Ionics, 1996, 89(1): 165-168. |
45 | ALLU A R, BALAJI S, ILLATH K, et al. Structural elucidation of NASICON (Na3Al2P3O12) based glass electrolyte materials: Effective influence of boron and gallium[J]. RSC Advances, 2018, 8(26): 14422-14433. |
46 | WINAND J M, RULMONT A, TARTE P. Ionic conductivity of the Na1+xMxIIIZr2-x(PO4)3 systems (M=Al, Ga, Cr, Fe, Sc, In, Y, Yb)[J]. Journal of Materials Science, 1990, 25(9): 4008-4013. |
47 | KHAKPOUR Z. Influence of M: Ce4+, Gd3+ and Yb3+ substituted Na3+xZr2-xMxSi2PO12 solid NASICON electrolytes on sintering, microstructure and conductivity[J]. Electrochimica Acta, 2016, 196: 337-347. |
48 | FUENTES R O, FIGUEIREDO F M, MARQUES F M B, et al. Processing and electrical properties of NASICON prepared from yttria-doped zirconia precursors[J]. Journal of the European Ceramic Society, 2001, 21(6): 737-743. |
49 | FUENTES R O, FIGUEIREDO F M, SOARES M R, et al. Submicrometric NASICON ceramics with improved electrical conductivity obtained from mechanically activated precursors[J]. Journal of the European Ceramic Society, 2005, 25(4): 455-462. |
50 | SUMAN G, RAO C S, KUMAR O P, et al. High Na-ion conducting Na1+x[SnxGe2-x(PO4)3] glass-ceramic electrolytes: Structural and electrochemical impedance studies[J]. Journal of the American Ceramic Society, 2018, 101(1): 167-177. |
51 | ESSOUMHI A, FAVOTTO C, MANSORI M, et al. Electrical conductivity and Hf4+ ion substitution range in NaSICON system[J]. Solid State Sciences, 2007, 9(3/4): 240-246. |
52 | BENNOUNA L, ARSALANE S, BROCHU R, et al. Spécificités des ions NbIV et MoIV dans les monophosphates de type Nasicon[J]. Journal of Solid State Chemistry, 1995, 114(1): 224-229. |
53 | YADAV P, BHATNAGAR M C. Preparation, structure and conductivity of Sn modified NASICON material[J]. Journal of Electroceramics, 2013, 30(3): 145-151. |
54 | TAKAHASHI T, KUWABARA K, SHIBATA M. Solid-state ionics-conductivities of Na+ ion conductors based on NASICON[J]. Solid State Ionics, 1980, 1(3): 163-175. |
55 | NIETO-MU OZ A M, ORTIZ-MOSQUERA J F, RODRIGUES A C M. Novel sodium superionic conductor of the Na1+yTi2SiyP3-yO12 series for application as solid electrolyte[J]. Electrochimica Acta, 2019, 319: 922-932. |
56 | MAZZA D, LUCCO-BORLERA M, RONCHETTI S. Powder diffraction study of arsenic-substituted nasicon structures MeZr2As3-xPxO12 (Me=Na+, K+)[J]. Powder Diffraction, 1998, 13(4): 227-231. |
57 | YANG J, WAN H, ZHANG Z, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J]. Rare Metals, 2018, 37(6): 480-487. |
58 | LENG H, HUANG J, NIE J, et al. Cold sintering and ionic conductivities of Na3.256Mg0.128Zr1.872Si2PO12 solid electrolytes[J]. Journal of Power Sources, 2018, 391: 170-179. |
59 | KIM J G, SON B, MUKHERJEE S, et al. A review of lithium and non-lithium based solid state batteries[J]. Journal of Power Sources, 2015, 282: 299-322. |
60 | 黄祯, 杨菁, 陈晓添, 等. 无机固体电解质材料的基础与应用研究[J]. 储能科学与技术, 2015, 4(1): 1-18. |
HUANG Zhen, YANG Jing, CHEN Xiaotian, et al. Research progress of inorganic solid electrolyte in foundmental and application field[J]. Energy Storage Science and Technology, 2015, 4(1): 1-18. | |
61 | YU S, SIEGEL D J. Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO)[J]. Chemistry of Materials, 2017, 29(22): 9639-9647. |
62 | PARK H, JUNG K, NEZAFATI M, et al. Sodium ion diffusion in Nasicon (Na3Zr2Si2PO12) solid electrolytes: Effects of excess sodium[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 27814-27824. |
63 | 章志珍, 施思齐, 胡勇胜, 等. 溶胶凝胶法制备钠离子固态电解质Na3Zr2Si2PO12及其电导性能研究[J]. 无机材料学报, 2013(11): 1255-1260. |
ZHANG Zhizhen, SHI Siqi, HU Yongsheng, et al. Sol-gel synthesis and conductivity properties of sodium ion solid state electrolytes Na3Zr2Si2PO12[J]. Journal of Inorganic Materials, 2013(11): 1255-1260. | |
64 | BELL N S, EDNEY C, WHEELER J S, et al. The influences of excess sodium on low-temperature NaSICON synthesis[J]. Journal of the American Ceramic Society, 2014, 97(12): 3744-3748. |
65 | NAQASH S, MA Q, TIETZ F, et al. Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction[J]. Solid State Ionics, 2017, 302: 83-91. |
66 | LIU S, ZHOU C, WANG Y, et al. Ce-substituted nanograin Na3Zr2Si2PO12 prepared by LF-FSP as sodium-ion conductors[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3502-3509. |
67 | SILVA P D, BRAM M, LAPTEV A M, et al. Sintering of a sodium-based NASICON electrolyte: A comparative study between cold, field assisted and conventional sintering methods[J]. Journal of the European Ceramic Society, 2019, 39(8): 2697-2702. |
68 | 谢章龙, 朱冬梅, 谢乔, 等. 热压烧结制备NASICON陶瓷的性能[J]. 稀有金属材料与工程, 2007, 36(S1): 494-497. |
XIE Zhanglong, ZHU Dongmei, XIE Qiao, et al. Properties of hot-press sintered NASICON ceramics[J]. Rare Metal Materials and Engineering, 2007, 36(S1): 494-497. | |
69 | SCH F O, WEIBEL A, LLEWELLYN P L, et al. Preparation and electrical properties of dense ceramics with NASICON composition sintered at reduced temperatures[J]. Journal of Electroceramics, 2004, 13(1): 817-823. |
70 | LEE J S, CHANG C M, LEE Y I L, et al. Spark plasma sintering (SPS) of NASICON ceramics[J]. Journal of the American Ceramic Society, 2004, 87(2): 305-307. |
71 | WANG H, OKUBO K, INADA M, et al. Low temperature-densified NASICON-based ceramics promoted by Na2O-Nb2O5-P2O5 glass additive and spark plasma sintering[J]. Solid State Ionics, 2018, 322: 54-60. |
72 | NIAZMAND M, KHAKPOUR Z, MORTAZAVI A. Electrochemical properties of nanostructure NASICON synthesized by chemical routes: A comparison between coprecipitation and sol-gel[J]. Journal of Alloys and Compounds, 2019, 798: 311-319. |
73 | ZHANG Q, WEN Z, LIU Y, et al. Na+ ion conductors of glass-ceramics in the system Na1+xAlxGe2-xP3O12(0.3 ≤ x ≤ 1.0)[J]. Journal of Alloys and Compounds, 2009, 479(1/2): 494-499. |
74 | ZHU Y S, LI L L, LI C Y, et al. Na1+xAlxGe2-xP3O12(x=0.5) glass-ceramic as a solid ionic conductor for sodium ion[J]. Solid State Ionics, 2016, 289: 113-117. |
75 | LI C, JIANG S, LV J W, et al. Ionic conductivities of Na-Ge-P glass ceramics as solid electrolyte[J]. Journal of Alloys and Compounds, 2015, 633: 246-249. |
76 | HONMA T, OKAMOTO M, TOGASHI T, et al. Electrical conductivity of Na2O-Nb2O5-P2O5 glass and fabrication of glass-ceramic composites with NASICON type Na3Zr2Si2PO12[J]. Solid State Ionics, 2015, 269: 19-23. |
77 | OKUBO K, WANG H, HAYASHI K, et al. A dense NASICON sheet prepared by tape-casting and low temperature sintering[J]. Electrochimica Acta, 2018, 278: 176-181. |
78 | NOI K, SUZUKI K, TANIBATA N, et al. Liquid-phase sintering of highly Na+ ion conducting Na3Zr2Si2PO12 ceramics using Na3BO3 additive[J]. Journal of the American Ceramic Society, 2017, 101(3): 1255-1265. |
79 | OH J A S, HE L, PLEWA A, et al. Composite NASICON (Na3Zr2Si2PO12) solid-state electrolyte with enhanced Na+ ionic conductivity: Effect of liquid phase sintering[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40125-40133. |
80 | SUZUKI K, NOI K, HAYASHI A, et al. Low temperature sintering of Na1+xZr2SixP3-xO12 by the addition of Na3BO3[J]. Scripta Materialia, 2018, 145: 67-70. |
81 | SHAO Y, ZHONG G, LU Y, et al. A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity[J]. Energy Storage Materials, 2019, 23: 514-521. |
82 | CAO X G, ZHANG X H, TAO T, et al. Effects of antimony tin oxide (ATO) additive on the properties of Na3Zr2Si2PO12 ceramic electrolytes[J]. Ceramics International, 2019, 46(6): 8405-8412. |
83 | CHEN D, LUO F, GAO L, et al. Influence of indium-tin oxide additive on the sintering process and conductivity of Na3Zr2Si2PO12 solid electrolyte[J]. Journal of Electronic Materials, 2017, 46(11): 6367-6372. |
84 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): 1601196-1601207. |
85 | JALALIAN-KHAKSHOUR A, PHILLIPS C O, JACKSON L, et al. Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity[J]. Journal of Materials Science, 2020, 55(6): 2291-2302. |
86 | LEE S M, LEE S T, LEE D H, et al. Effect of particle size on the density and ionic conductivity of Na3Zr2Si2PO12 NASICON[J]. Journal of Ceramic Processing Research, 2015, 16(1): 49-53. |
87 | GAO H, XIN S, XUE L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem., 2018, 4(4): 833-844. |
88 | ZHOU W, LI Y, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. |
89 | NOGUCHI Y, KOBAYASHI E, PLASHNITSA L S, et al. Fabrication and performances of all solid-state symmetric sodium battery based on NASICON-related compounds[J]. Electrochimica Acta, 2013, 101: 59-65. |
90 | LIU L, QI X, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636. |
91 | GAO H, XUE L, XIN S, et al. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angewandte Chemie International Edition, 2017, 56(20): 5541-5545. |
92 | NOI K, NAGATA Y, HAKARI T, et al. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614. |
93 | DE LA TORRE-GAMARRA C, APPETECCHI G B, ULISSI U, et al. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?[J]. Journal of Power Sources, 2018, 383: 157-163. |
94 | KIM J K, LIM Y J, KIM H, et al. A hybrid solid electrolyte for flexible solid-state sodium batteries[J]. Energy & Environmental Science, 2015, 8(12): 3589-3596. |
95 | ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. |
96 | ZHANG Z, XU K, RONG X, et al. Na3.4Zr1.8Mg0.2Si2PO12 filled poly(ethylene oxide)/Na(CF3SO2)2N as flexible composite polymer electrolyte for solid-state sodium batteries[J]. Journal of Power Sources, 2017, 372: 270-275. |
97 | NIU W, CHEN L, LIU Y, et al. All-solid-state sodium batteries enabled by flexible composite electrolytes and plastic-crystal interphase[J]. Chemical Engineering Journal, 2020, 384: 123233-123241. |
98 | KOBAYASHI T, CHEN F, SEZNEC V, et al. HBO2 as an adhesive agent for the multi-step fabrication of all-solid-state sodium batteries[J]. Journal of Power Sources, 2020, 450: 227597-227602. |
99 | LAL RE F, LERICHE J B, COURTY M, et al. An all-solid state NASICON sodium battery operating at 200 ℃[J]. Journal of Power Sources, 2014, 247: 975-980. |
100 | KEHNE P, GUHL C, MA Q, et al. Sc-substituted Nasicon solid electrolyte for an all-solid-state NaxCoO2/Nasicon/Na sodium model battery with stable electrochemical performance[J]. Journal of Power Sources, 2019, 409: 86-93. |
101 | GUHL C, KEHNE P, MA Q, et al. Interfaces in solid-state sodium-ion batteries: NaCoO2 thin films on solid electrolyte substrates[J]. Electrochimica Acta, 2018, 268: 226-233. |
102 | LAN T, TSAI C L, TIETZ F, et al. Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials[J]. Nano Energy, 2019, 65: 104040-104048. |
103 | ZHANG Y, WANG C, PASTEL G, et al. 3D wettable framework for dendrite-free alkali metal anodes[J]. Advanced Energy Materials, 2018, 8(18): 1800635-1800644. |
104 | FU H, YIN Q, HUANG Y, et al. Reducing interfacial resistance by Na-SiO2 composite anode for NASICON-based solid-state sodium battery[J]. ACS Materials Letters, 2020, 2: 127-132. |
105 | WANG C, XIE H, ZHANG L, et al. Universal soldering of lithium and sodium alloys on various substrates for batteries[J]. Advanced Energy Materials, 2017, 8(6): 1701963-1701970. |
106 | YU X, MANTHIRAM A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte[J]. Matter., 2019, 1(2): 439-451. |
107 | HASHIMOTO T, HAYASHI K. Aqueous and nonaqueous sodium-air cells with nanoporous gold cathode[J]. Electrochimica Acta, 2015, 182: 809-814. |
108 | LIANG F, QIU X, ZHANG Q, et al. A liquid anode for rechargeable sodium-air batteries with low voltage gap and high safety[J]. Nano Energy, 2018, 49: 574-579. |
109 | GUIN M, INDRIS S, KAUS M, et al. Stability of NASICON materials against water and CO2 uptake[J]. Solid State Ionics, 2017, 302: 102-106. |
110 | KIM Y, KIM H, PARK S, et al. Na ion-conducting ceramic as solid electrolyte for rechargeable seawater batteries[J]. Electrochimica Acta, 2016, 191: 1-7. |
111 | HWANG S M, J-S PARK, KIM Y, et al. Rechargeable seawater batteries—From concept to applications[J]. Advanced Materials, 2019, 31(20): 1804936-1804949. |
112 | SENTHILKUMAR S T, ABIRAMI M, KIM J, et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications[J]. Journal of Power Sources, 2017, 341: 404-410. |
113 | YAMAZOE N. Toward innovations of gas sensor technology[J]. Sensors and Actuators B: Chemical, 2005, 108(1/2): 2-14. |
114 | JASI SKI P, NOWAKOWSKI A. Simultaneous detection of sulphur dioxide and nitrogen dioxide by Nasicon sensor with platinum electrodes[J]. Ionics, 2000, 6(3): 230-234. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[3] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[4] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[5] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[6] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[7] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[8] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[9] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[10] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[11] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[12] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[13] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[14] | DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends [J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||