Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 776-783.doi: 10.19799/j.cnki.2095-4239.2019.0284
Previous Articles Next Articles
QU Chenying(), HOU Zhaoxia(), WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao
Received:
2019-12-22
Revised:
2020-01-16
Online:
2020-05-05
Published:
2020-05-11
Contact:
Zhaoxia HOU
E-mail:1738386607@qq.com;Luckyxia2007@126.com
CLC Number:
QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors[J]. Energy Storage Science and Technology, 2020, 9(3): 776-783.
1 | WANG D , GENG Z , LI B , et al . High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochim Acta, 2015, 173: 377-384. |
2 | LIU L , LU Q , YANG S , et al . All-printed solid-state microsupercapacitors derived from self-template synthesis of Ag@PPy nanocomposites[J]. Advanced Materials Technologies, 2018, 3(1):1700206-1700215. |
3 | KRISHNAMOORTHY K , PAZHAMALA P , KIM S J . Two-dimensional siloxene nanosheets: Novel high-performance supercapacitor electrode materials[J]. Energy Environmental Science, 2018, 11(6): 1595-1602. |
4 | YANG J , LI G , PAN Z , et al . All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnO x nanospike and graphene electrodes[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22172-22180. |
5 | MARIAPPAN V K , PAZHAMALAI P , SAHOO S . Electrodeposited molybdenum selenide sheets on nickel foam as a binder-free electrode for supercapacitor application[J]. Electrochimica Acta, 2018, 265: 514-522. |
6 | 杨建锋, 李林艳, 吴振岳, 等 . 无机固态锂离子电池电解质的研究进展[J]. 储能科学与技术, 2019, 8(5): 829-837. |
YANG J F , LI L Y , WU Z Y , et al . Progress of inorganic solid electrolyte for lithium ion batteries[J]. Energy Storage Science and Technology, 2019, 8(5): 829-837. | |
7 | GUO X , BAI N , TIAN Y , et al . Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors[J]. Journal of Power Sources, 2018, 408: 51-57. |
8 | YUN T G , WANG H , BAI I , et al . Polypyrrole-MnO2-coated textile-based flexible-stretchable supercapacitor with high electrochemical and mechanical reliability[J]. ACS Applied Materials&Interfaces, 2015, 7(17): 9228-9234. |
9 | JOST K , DURKIN D P , HAVERHALS L M , et al . Natural fiber welded electrode yarns for knittable textile supercapacitors[J]. Advanced Energy Materials, 2014, 5(4):1401286-1401294. |
10 | ZHONG C , DENG Y , HU W , et al . A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44(21): 7484-7539. |
11 |
TIE J F, RONG L D , LIU H C , et al . An autonomously healable, highly stretchable and cyclically compressible, wearable hydrogel as multimodal sensor[J]. Polymer Materials, 2020, doi: 10.1039/c9py01737b .
doi: 10.1039/c9py01737b |
12 | SHU H , YANG Y , LIU C Z , et al . A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors[J]. Journal of Materials Chemistry C, 2020, 8(2): 550-560. |
13 | DIAO W J , WU L L , MA X F , et al . Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network[J]. Journal of Applied Polymer Science, 2019, 136(29): 47783-47794. |
14 | LIU Z H , LIANG G J , ZHAN Y X , et al . A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte[J]. Nano Enerey, 2019, 58: 732-742. |
15 | 陈斌, 吕彦伯, 谌可炜, 等 . 固态超级电容器的分类与研究进展[J]. 高电压技术, 2019, 45(3): 929-939. |
CHEN B , LYU Y B, CHEN K Y , et al . Research progress of solid-state supercapacitors electrolytes and its classifications[J]. High Voltage Engineering, 2019, 45(3): 929-939. | |
16 | LOH X J . Supramolecular host-guest polymeric materials for biomedical applications[J]. Royal Society of Chemistry, 2014, 1(2): 185-195. |
17 | MALDA J , VISSER J , MELCHEELS F P , et al . Engineering hydrogels for biofabrication[J]. Advanced Materials, 2013, 25: 5011-5028. |
18 | WEBBERM J , LANGER R . Drug delivery by supramolecular design[J]. Chemical Society Reviews, 2017, 46(21): 6600-6620. |
19 | CULVER H R , CLEGG J R , PEPPAS N A . Analyte-responsive hydrogels: Intelligent materials for biosensing and drug delivery[J]. Accounts of Chemical Research, 2018, 50: 170-178. |
20 | VINH V T , DUCKSHIN P Y , LEE C . Hydrogel applications for adsorption of contaminants in water and wastewater treatment[J]. Environmental Science and Pollution Researches, 2018, 25(25): 24569-24599. |
21 | ZHOU X Y , ZHAO F , GUO Y H . A hydrogel-based antifouling solar evaporator for highly efficient water desalination[J]. Energy Environmental Science, 2018, 11: 1985-1992. |
22 | JANE R C , KAR W Y, JEAN Y C , et al . Recent advances in photocrosslinkable hydrogels for biomedical applications[J]. BioTechniques, 2019, 66(1): 40-53. |
23 | GU Y W , ZHAO J L , JOHNSON J A . A (macro)molecular-level understanding of polymer network topology[J]. Trends in Chemistry, 2019, 1(3): 318-334. |
24 | GUO Y H , BAE J W, ZHAO F , et al . Functional hydrogels for next-generation batteries and supercapacitors[J]. Trends in Chemistry, 2019, 1(3): 335-348. |
25 | DU Y K , USHA P S , BORA Y , et al . Recent progress of in situ formed gels for biomedical applications[J]. Progress in Polymer Science. 2013, 38(3/4): 672-701. |
26 | DANKS A E , HALL S R , SCHNEPP Z . The evolution of sol-gel chemistry as a technique for materials synthesis[J]. Royal Society of Chemistry, 2016, 3: 91-112. |
27 | QIN M , SUN M , BAI R B , et al . Bioinspired hydrogel interferometer for adaptive coloration and chemical sensing[J]. Advanced Materials, 2018, 30(21): 1800468-1800475. |
28 | GONG J P . Materials both tough and soft[J]. Science, 2014, 344(6180): 161-162. |
29 | LIU H , XIONG C , TAO Z , et al . Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel[J]. Royal Society of Chemistry, 2015, 5: 33083-33088. |
30 | GAO H , LIAN K . Proton-conducting polymer electrolytes and their applications in solid supercapacitors: A review[J]. Royal Society of Chemistry Advances, 2014, 4(62): 33091-33113. |
31 | JAIN A , TRIPATHI S K . Experimental studies on high-performance supercapacitor based on nanogel polymer electrolyte with treated activated charcoal[J]. Ionics, 2013, 19(3): 549-557. |
32 | HSUEH M F , HUANG C W , WU C A , et al . The synergistic effect of nitrile and ether functionalities for gel electrolytes used in supercapacitors[J]. The Journal of Physical Chemistry C, 2013, 117(33): 16751-16758. |
33 | OBEIDAT A , RASTOGI A C . Graphene and poly(3, 4-ethylenedioxythiophene)(PEDOT) based hybrid supercapacitors with ionic liquid gel electrolyte in solid state design and their electrochemical performance in storage of solar photovoltaic generated electricity[J]. MRS Advances, 2016, 1(53): 3553-3564. |
34 | LUKATSKAVA M R , DUNN B , GOGOTSI Y . Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647-12660. |
35 | YAN J , WANG Q , WEI T , et al . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816-1300859. |
36 | CHOUDHURY N A , SAMPATH S , SHUKLA A K . Hydrogel-polymer electrolytes for electrochemical capacitors: An overview[J]. Royal Society of Chemistry, 2016, 2: 55-67. |
37 | FEI H J , YANG C Y , BAO H , et al . Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinylalcohol)-H2SO4 porous gel electrolytes[J]. Journal of Power Sources, 2014, 266(15): 488-495. |
38 | SCHROEDER M , ISKEN P , WINTER M , et al . An investigation on the use of a methacrylate-based gel polymer electrolyte in high power devices[J]. Journal of the Electrochemical Society, 2013, 160(10):A1753-A1758. |
39 | 寻之玉, 侯璞, 刘旸, 等 . 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83. |
XUN J Y , HOU P , LIU Y , et al . Research progress of polymer electrolytes in supercapacitors[J]. Journal of Materials Engineering, 2019, 47(11): 71-83. | |
40 | ENTHILKUMAR S T , SELVAN R K , PONPANDIAN N , et al . Redox additive aqueous polymer gel electrolyte for an electric double layer capacitor[J]. RSC Advances, 2012, 2(24): 8937-8941. |
41 | YINY J , ZHOU J J , MANSOUR A N , et al . Effect of NaI/I2 mediators on properties of PEO/LiAlO2 based all-solid-state supercapacitors[J]. Journal of Power Sources, 2016, 196(14): 5997-6002. |
42 | ENTHILKUMAR S T , SELVAN R K , PONPANDIAN N , et al . Improved performance of electric double layer capacitor using redox additive (VO2+/VO2 +) aqueous electrolyte[J]. Journal of Materials Chemistry A, 2015, 1(27): 7913-7926. |
43 | XIE Y B , WANG J H . Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte[J]. Journal of Sol-Gel Science and Technology, 2018, 86(3): 760-772. |
44 | MA G , LI J , SUN K , et al . High performance solid-state supercapacitor with PVA-KOH-K3[Fe(CN)6] gel polymer as electrolyte and separator[J]. Journal of Power Sources, 2017, 256: 281-287. |
45 | KIM M , KIM J . Redox active KI solid-state electrolyte for battery-like electrochemical capacitive energy storage based on MgCo2O4 nanoneedles on porous β-polytype silicon carbide[J]. Electrochimica Acta, 2018, 260: 921-931. |
46 | LE P A , NGUYEN V T , YEN P J, et al . A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors[J]. Sustainable Energy &Fuels, 2019, 3(6): 1536-1545. |
47 |
PHUOC A L , VAN T N, PO J Y, et al . A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors[J]. Sustainable Energy & Fuels, 2019, doi: 10.1039/c9se00011a .
doi: 10.1039/c9se00011a |
48 | CHRISROPH H , MICHAEL S . Electrolytes and conducting salts[J]. Lithium-Ion Batteries: Basics and Applications, 2018, 3(1): 59-74. |
49 | SINGH H P , KUMAR R , SEKHON S S , et al . Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH4CF3SO3 [J]. Bulletin of Materials Science, 2005, 28(5): 467-472. |
[1] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[2] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[3] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[4] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
[5] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[6] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[7] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[8] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[9] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[10] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[11] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[12] | Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors [J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382. |
[13] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[14] | CHEN Xiaoxia, LIU Kai, WANG Baoguo. Research on high-safety electrolytes and their application in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 583-592. |
[15] | GUAN Yibiao, SHEN Jinran, LI Kangle, GUAN Zhaoruxin, ZHOU Shuqin, GUO Cuijing, XU Bin. Application of graphene conductive additives in cathodes of lithium ion batteries [J]. Energy Storage Science and Technology, 2020, 9(1): 70-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||