Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (3): 784-790.doi: 10.19799/j.cnki.2095-4239.2019.0227
Previous Articles Next Articles
CHEN Li1(), WANG Yanjie1,2(), TAN Jing3
Received:
2019-10-11
Revised:
2019-10-28
Online:
2020-05-05
Published:
2019-11-14
Contact:
Yanjie WANG
E-mail:chenl@senior798.com;wangy.j@foxmail.com
CLC Number:
CHEN Li, WANG Yanjie, TAN Jing. Review on non-woven fabric-based separator for lithium ion batteries[J]. Energy Storage Science and Technology, 2020, 9(3): 784-790.
1 | HUANG X S . Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making progress[J]. Journal of Power Sources, 2014, 256(12): 96-101. |
2 | YOSHIO M , RALPH J B , AKIYA K . Lithium-ion batteries[M]. New York: Springer, 2009: 367-412. |
3 | LEE H, YANILMAZ M , TOPRAKCI O , et al . A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7: 3857-3886. |
4 | 王洪建, 程健, 任永强, 等 . 高安全性锂离子电池隔膜制造工艺研究进展[J]. 电源技术, 2016, 40(12): 2466-2468. |
WANG H J , CHENG J , REN Y Q , et al . Research progress of high-security lithium-ion battery separator manufacturing process[J]. Chinese Journal of Power Sources, 2016, 40(12): 2466-2468. | |
5 | KRITZER P . Separators for nickel metal hydride and nickel cadmium batteries designed to reduce self-discharge rates[J]. Journal of Power Sources, 2004, 137(2): 317-321. |
6 | WHEAR J K , YARITZ J G . Nonwoven separator for a nickel-metal hydride battery: US 6537696[P]. 2003-3-25. http://www. freepattentsonline.com/6537696.html |
7 | LI X , SONG Y , WANG L , et al . Self-discharge mechanism of Ni-MH battery by using acrylic acid grafted polypropylene separator[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3798-3801. |
8 | HARADA M , ARAKI S , KIMURA T , et al . New separator with hydrophilic surface treatment for flooded-type lead-acid battery[J]. Journal of Energy Storage, 2018, 16: 197-202. |
9 | ZHANG B X , HOU Q X , LIU W , et al . Wet-laid formation and strength enhancement of alkaline battery separators using polypropylene fibers and polyethylene/polypropylene bicomponent fibers as raw materials[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7739-7746. |
10 | SZUBZDA B , SZMAJA A , OZIMEK M , et al . Polymer membranes as separators for supercapacitors[J]. Applied Physics A, 2014, 117(4): 1801-1809. |
11 | SUN X Z , ZHANG X , HUANG B , et al . Effects of separator on the electrochemical performance of electrical double-layer capacitor and hybrid battery-supercapacitor[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 485-491. |
12 | HUANG X S . Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2011, 15: 649-662. |
13 | ASHIDA T , TSUKUDA T . Nonwoven fabric for separator of non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same: US 6200706[P]. 2001-3-13. http://www. freepattentsonline.com/6200706.html |
14 | KRITZER P . Nonwoven support material for improved separators in Li-polymer batteries[J]. Journal of Power Sources, 2006, 161(2): 1335-1340. |
15 | WANG Y , ZHAN H , HU J , et al . Wet-laid non-woven fabric for separator of lithium-ion battery[J]. Journal of Power Sources, 2009, 189: 616-619. |
16 | JIANG L Q , ZHANG X F , CHEN Y J , et al . Modified polypropylene/cotton fiber composite nonwoven as lithium-ion battery separator[J]. Materials Chemistry and Physics, 2018, 219: 368-375. |
17 | DOSHI J , RENEKER D H . Electrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35(2/3): 151-160. |
18 | LEE S W, CHOI S W , JO S M, et al . Electrochemical properties and cycle performance of electrospun poly(vinylidene fluoride)-based fibrous membrane electrolytes for Li-ion polymer battery[J]. Journal of Power Sources, 2006, 163(1): 41-46. |
19 | LI X , CHERUVALLY G , KIM J K , et al . Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries[J]. Journal of Power Sources, 2007, 167(2): 491-498. |
20 | BANSAL D , MEYER B , SALOMON M . Gelled membranes for Li and Li-ion batteries prepared by electrospinning[J]. Journal of Power Sources, 2008, 178(2): 848-851. |
21 | CHO T H, SAKAI T , TANASE S , et al . Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery[J]. Electrochemical and Solid-state Letters, 2007, 10(7): A159-A162. |
22 | 伯章 . 杜邦公司开发锂离子电池用聚酰亚胺隔膜[J]. 国外塑料, 2010, 28(9): 67. |
BO Z . Dupont develops polyimide separator for lithium-ion batteries[J]. World Plastics, 2010, 28(9): 67. | |
23 | SHAYAPAT J , CHUNG O H , PARK J S . Electrospun polyimide-composite separator for lithium-ion batteries[J]. Electrochimica Acta, 2015, 170: 110-121. |
24 | ZHOU X H , YUE L P , ZHANG J J , et al . A core-shell structured polysulfonamide-based composite nonwoven towards high power lithium ion battery separator[J]. Journal of the Electrochemical Society, 2013, 160(9): A1341-A1347. |
25 | CHOI E S , LEE S Y . Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery[J]. Journal of Materials Chemistry, 2011, 21: 14747-14754. |
26 | ZHANG J J , LIU Z H , KONG Q S , et al . Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces, 2013, 5: 128-134. |
27 | RYOU M H , LEE D J, LEE J N, et al . Excellent cycle life of lithium-metal anodes in lithium-ion batteries with mussel-inspired polydopamine-coated separators[J]. Advanced Energy Materials, 2012, 2(6): 645-650. |
28 | HENNIGE V , HYING C , HORPEL G . Separator for use in high-energy batteries and method for the production thereof: US 7790321[P]. 2010-07-09. http://www. freepattentsonline.com/7790321.html |
29 | MITSUBISHI Paper Mills Limited . Non-woven separator with ceramic coating nanobasex (for LIB)[EB/OL]. [2016-10-28]. . |
30 | 夏清华 . 锂离子电池新型隔膜技术及市场概况[J]. 广东化工, 2018, 45(8): 172-173. |
XIA Q H . Technology and market of lithium-ion battery separator[J]. Guangdong Chemical Industry, 2018, 45(8): 172-173. | |
31 | HUANG X S . Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process[J]. Journal of Power Sources, 2014, 256: 96-101. |
32 | MOON J , JEONG J Y , KIM J I , et al . An ultrathin inorganic-organic hybrid layer on commercial polymer separators for advanced lithium-ion batteries[J]. Journal of Power Sources, 2019, 416: 89-94. |
33 | LEE Y M, KIM J W , CHOI N S , et al . Novel porous separator based on PVDF and PE non-woven matrix for rechargeable lithium batteries[J]. Journal of Power Sources, 2005, 139(1/2): 235-241. |
34 | LEE J, WON J, KIM J H ,et al . Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly (ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries[J]. Journal of Power Sources, 2012, 216: 42-47. |
35 | RAGHAVAN P , ZHAO X H , KIM J K , et al . Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly (vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers[J]. Electrochimica Acta, 2008, 54(2): 228-234. |
36 | CHO T H, TANAKA M , OHNISHI H , et al . Composite nonwoven separator for lithium-ion battery: Development and characterization[J]. Journal of Power Sources, 2010, 195: 4272-4277. |
37 | LI Z , XIONG Y , SUN S , et al . Tri-layer nonwoven membrane with shutdown property and high robustness as a high-safety lithium ion battery separator[J]. Journal of Membrane Science, 2018, 565: 50-60. |
38 | XU Q , KONG Q S , LIU Z H , et al . Polydopamine-coated cellulose microfibrillated membrane as high performance lithium-ion battery separator[J]. RSC Advances, 2014, 4(16): 7845-7850. |
39 | DING J , KONG Y , LI P , et al . Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery[J]. Journal of the Electrochemical Society, 2012, 159(9): A1474-A1480. |
40 | ZHANG H F , WANG X , LIANG Y . Preparation and characterization of a lithium-ion battery separator from cellulose nanofibers[J]. Heliyon, 2015, 1(2):doi: 10.1016/j.heliyon.2015.e00032. |
41 | WANG H , GAO H . A sandwich-like composite nonwoven separator for Li-ion batteries[J]. Electrochemical Acta, 2016, 215: 525-534. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[5] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[6] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[7] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[8] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[9] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[10] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
[11] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[12] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[13] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[14] | Dezheng MA, Peichao LI, Hengyun ZHANG. Fluid-structure coupling effect of lithium-ion battery separator under compression [J]. Energy Storage Science and Technology, 2021, 10(2): 483-490. |
[15] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||