Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 425-431.doi: 10.19799/j.cnki.2095-4239.2020.0342
• Energy Storage Materials and Devices • Previous Articles Next Articles
Li WANG(), Jianhong LIU, Xiangming HE()
Received:
2020-10-28
Revised:
2020-11-07
Online:
2021-03-05
Published:
2021-03-05
CLC Number:
Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes[J]. Energy Storage Science and Technology, 2021, 10(2): 425-431.
1 | WANG L, HE X M, SUN W T, WANG J L, LI Y D, FAN S S. Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials[J]. Nano Lett, 2012, 12 (11): 5632-5636. |
2 | WANG L, LI J G, HE X M, PU W H, WAN C R, JIANG C Y. Recent advances in layered LiNixCoyMn1-x-yO2 cathode materials for lithium ion batteries[J]. J Solid State Electrochem, 2009, 13 (8): 1157-1164. |
3 | ZHAO H, SHENG L, WANG L, XU H, HE X M. The opportunity of metal organic frameworks and covalent organic frameworks in lithium (ion) batteries and fuel cells[J]. Energy Storage Materials, 2020, 33: 360-381. |
4 | WANG H, SHENG L, YASIN G, WANG L, XU H, HE X. Reviewing the current status and development of polymer electrolytes for solid-state lithium batteries[J]. Energy Storage Materials, 2020, 33: 188-215. |
5 | FENG X, REN D, HE X, OUYANG M. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4 (4): 743-770. |
6 | SUN Y, WANG L, LI Y, LI Y, LEE H R, PEI A, HE X, CUI Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density[J]. Joule, 2019, 3 (4): 1080-1093. |
7 | 赵云, 亢玉琼, 金玉红, 王莉, 田光宇, 何向明. 锂离子电池硅基负极及其相关材料[J]. 化学进展, 2019(4): 613-630. |
ZHAO Y, KANG Y Q, JIN Y H, WANG L, TIAN G Y, HE X M. Silicon-based and related materials for lithium-ion batteries[J]. Progress in Chemistry, 2019(4): 613-630. | |
8 | 王莉, 何向明, 高剑, 李建军, 姜长印. 锂离子电池正极材料生产技术的发展[J]. 储能科学与技术, 2018(5): 888-896. |
WANG L, HE X M, GAO J, LI J J, JIANG C Y. Manufacturing method for cathode materials of Li-ion batteries[J]. Energy Storage Science and Technology, 2018(5): 888-896. | |
9 | DING K, QU R, ZHOU L, ZHANG D, CHEN J, HE X, WANG L, WANG H, DOU H. Preparation of CuBr nanoparticles on the surface of the commercial copper foil via a soaking method at room temperature: Its unexpected facilitation to the discharge capacity of the commercial graphite electrode[J]. J Electroanal Chem, 2020, 877: 114626. |
10 | DING K, QU R, ZHOU L, ZHANG D, CHEN J, HE X M, WANG L, WANG H, DOU H. In situ preparation of CuClcubic particles on the commercial copper foil: Its significant facilitation to the electrochemical performance of the commercial graphite and its unexpected photochromic behavior[J]. J Alloy Compd, 2020, 835: doi.org/10.1016/j.jallcom.2020.155302. |
11 | ZHAO H P, REN J G, HE X M, LI J J, JIANG C Y, WAN C R. Modification of natural graphite for lithium ion batteries[J]. Solid State Sci, 2008, 10 (5): 612-617. |
12 | ZHAO H P, REN J G, HE X M, LI J J, JIANG C Y, WAN C R. Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries[J]. Electrochim Acta, 2007, 52 (19): 6006-6011. |
13 | LI J J, HE X M, JIANG C Y, WAN C R. Coke coating of natural graphite for Li-ion batteries[J]. J New Mat Electrochem Syst, 2006, 9 (1): 21-25. |
14 | FENG X, OUYANG M, LIU X, LU L, XIA Y, HE X M. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
15 | JIA M, JIN Y, ZHAO P, ZHAO C, JIA M, WANG L, HE X M. Hollow NiCoSe2 microspheres@N-doped carbon as high-performance pseudocapacitive anode materials for sodium ion batteries[J]. Electrochim Acta, 2019, 310: 230-239. |
16 | JIN Y H, WANG L, SHANG Y M, GAO J, LI J J, HE X M. Three-dimension hierarchical flower-like Ni1.5Co1.5O4 nanostructures composed of two-dimension ultrathin nanosheets as an anode material for lithium ion batteries[J]. Mater Lett, 2015, 151: 49-52. |
17 | JIN Y H, WANG L, SHANG Y M, GAO J, LI J J, HE X M. Facile synthesis of monodisperse Co3O4 mesoporous microdisks as an anode material for lithium ion batteries[J]. Electrochim Acta, 2015, 151: 109-117. |
18 | ZHAO H P, JIANG C Y, HE X M, REN J G, WAN C R. A novel composite anode for LIB prepared via template-like-directed electrodepositing Cu-Sn alloy process[J]. Ionics, 2008, 14 (2): 113-120. |
19 | REN J G, HE, X M, WANG L, PU W H, JIANG C Y, WAN C R. Nanometer copper-tin alloy anode material for lithium-ion batteries[J]. Electrochim Acta, 2007, 52 (7): 2447-2452. |
20 | WANG K, HE X M, REN J G, WANG L, JIANG C Y, WAN C R. Preparation of Sn2Sb alloy encapsulated carbon microsphere anode materials for Li-ion batteries by carbothermal reduction of the oxides[J]. Electrochim Acta, 2006, 52 (3): 1221-1225. |
21 | PU W H, HE X M, REN J G, WAN C R, JIANG C Y. Electrodeposition of Sn-Cu alloy anodes for lithium batteries[J]. Electrochim Acta, 2005, 50 (20): 4140-4145. |
22 | ZHOU J, SHI Q, ULLAH S, YANG X, BACHMATIUK A, YANG R, RUMMELI M H. Phosphorus-based composites as anode materials for advanced alkali metal ion batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202004648. |
23 | CHANG G, ZHAO Y, DONG L, WILKINSON D P, ZHANG L, SHAO Q, YAN W, SUN X, ZHANG J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries[J]. J Mater Chem A, 2020, 8 (10): 4996-5048. |
24 | ZHAO H, WANG L, CHEN Z, HE X. Challenges of fast charging for electric vehicles and the role of red phosphorous as anode material: Review[J]. Energies, 2019, 12(20): doi: 10.3390/en12203897. |
25 | 周朝辉, 王莉, 李建刚, 何向明. 单质磷复合材料在二次电池中的应用研究进展[J]. 储能科学与技术, 2016, 5 (4): 430-435. |
ZHOU Z H, WANG L, LI J G, HE X M. Recent advances of elemental phosphorus composite as anode materials for secondary batteries[J]. Energy Storage Science and Technology, 2016, 5 (4): 430-435. | |
26 | 李骄阳, 王莉, 何向明, 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28 (Z2): 193-203. |
LI J Y, WANG L, HE X M. Phosphorus-based composite anode materials for secondary batteries[J]. Progress in Chemistry, 2016, 28 (Z2): 193-203. | |
27 | WANG L, HE X M, LI J J, SUN W T, GAO J, GUO J W, JIANG C Y. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angew Chem -Int Edit, 2012, 51 (36): 9034-9037. |
28 | LI J Y, QIAN Y M, WANG L, HE X M. Nitrogen-doped carbon for red phosphorous based anode materials for lithium ion batteries[J]. Materials, 2018, 11 (1): 134-142. |
29 | BAI A J, WANG L, LI Y, HE X M, WANG J X, WANG J L. Composite of graphite/phosphorus as anode for lithium-ion batteries[J]. J Power Sources, 2015, 289: 100-104. |
30 | LI J Y, WANG L, HE X M, WANG J L. Effect of pore size distribution of carbon matrix on the performance of phosphorus@carbon material as anode for lithium-ion batteries[J]. ACS Sustain Chem Eng, 2016, 4(8): 4217-4223. |
31 | LI J Y, WANG L, REN Y M, ZHANG Y, WANG Y F, HU A G, HE X M. Distinctive slit-shaped porous carbon encapsulating phosphorus as a promising anode material for lithium batteries[J]. Ionics, 2016, 22 (2): 167-172. |
32 | LI J, WANG L, WANG Z, TIAN G, HE X. Economic and high performance phosphorus-carbon composite for lithium and sodium storage[J]. ACS Omega, 2017, 2 (8): 4440-4446. |
33 | 周朝辉, 王莉, 李建刚, 何向明, 尚玉明, 王建龙. PAA黏结剂用于高比容量锂离子电池磷@碳负极[J]. 储能科学与技术, 2017, 6 (6): 1328-1332. |
ZHOU Z H, WANG L, LI J J, HE X M, SHANG Y M, WANG J L. Application of PAA binder in high capacity phosphorus@carbon composite anode for lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6 (6): 1328-1332. | |
34 | 陆浩, 李金熠, 刘柏男, 等, 锂离子电池纳米硅碳负极材料研发进展[J]. 储能科学与技术, 2017, 6 (5): 864-870. |
LU H, LI J, LIU B, LI H. Research and technology progress of nano-Si/C anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2017, 6 (5): 864-870. | |
35 | L J C, L X, J M S, et al. Flexible interface design for stress regulation of a silicon anode toward highly stable dual-ion batteries[J]. Advanced Materials, 2020, 32(17): 1908470-1908477. |
36 | ZHANG Miao, XIANG Lei, MASSIMILIANO & Galluzzi, et al. Uniform distribution of alloying/dealloying stress for high structural stability of an al anode in high-areal-density lithium-ion batteries[J]. Advanced Materials, 2019, 31(18): 10.1002/adma.201900826. |
37 | 周小龙, 欧学武, 刘齐荣, 唐永炳, 双离子电池研究进展[J]. 储能科学与技术,2020, 9 (2): 551-568. |
ZHOU X L, OU X W, LIU Q R, TANG Y B. Research progress on dual-ion batteries[J]. Energy Storage Science and Technology, 2020, 9 (2): 551-568. | |
38 | WANG L, ZHOU Z H, LI J G, HE X M. Red phosphorus composite anodes for Li-ion batteries[J]. Ionics, 2018, 24(1): 303-308. |
39 | TIAN W, WANG L, HUO K, HE X M. Red phosphorus filled biomass carbon as high-capacity and long-life anode for sodium-ion batteries[J]. J Power Sources, 2019, 430: 60-66. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[5] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[6] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[7] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[8] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[9] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[10] | Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics [J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205. |
[11] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[12] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[13] | Rongyan WEN, Zhihao GAO, Shulin MEN, Zuoqiang DAI, Jianmin ZHANG. Research progress of polyvinylidene fluoride based gel polymer electrolyte [J]. Energy Storage Science and Technology, 2021, 10(1): 40-49. |
[14] | Youman ZHAO, Xiaobo YAN, Hongkun DUAN, Zewei CHEN. Exploring mechanism of carbon nanotubes as conductive agent for improving performance of a silicon/carbon anode in LIB [J]. Energy Storage Science and Technology, 2021, 10(1): 118-127. |
[15] | Yan FENG, Lili ZHENG, Zuoqiang DAI, Dong WANG, Longzhou JIA, Tao YIN. Thermal characteristics of 18650 ternary Li-ion battery during discharge [J]. Energy Storage Science and Technology, 2021, 10(1): 319-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||