Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 1196-1205.doi: 10.19799/j.cnki.2095-4239.2020.0425
• Technical Economic Analysis of Energy Storage • Previous Articles Next Articles
Liping CHEN1(), Jinkui FENG2, Yuan TIAN2, Yongling AN2, Guangjun DONG1
Received:
2020-12-31
Revised:
2021-01-11
Online:
2021-05-05
Published:
2021-04-30
Contact:
Liping CHEN
E-mail:lpchen@sdu.edu.cn
CLC Number:
Liping CHEN, Jinkui FENG, Yuan TIAN, Yongling AN, Guangjun DONG. Knowledge mapping analysis of lithium secondary batteries research based on bibliometrics[J]. Energy Storage Science and Technology, 2021, 10(3): 1196-1205.
Table 1
Authors of paper about lithium secondary batteries at three stages"
阶段 | 主要作者 | 发表篇数 | 开始发表时间 |
---|---|---|---|
1 | H AGO | 5 | 1997 |
K TANAKA | 5 | 1997 | |
T YAMABE | 5 | 1997 | |
S YATA | 4 | 1997 | |
K HAYASHI | 4 | 1997 | |
T KISHI | 4 | 1997 | |
T MIURA | 4 | 1997 | |
J KAWAKITA | 4 | 1997 | |
J YAMAKI | 4 | 1997 | |
T OISHI | 3 | 1997 | |
S I TOBISHIMA | 3 | 1997 | |
T OHZUKU | 3 | 1997 | |
2 | D AURBACH | 20 | 2000 |
Y K SUN | 15 | 2003 | |
J M TARASCON | 11 | 2003 | |
JUNICHI YAMAKI | 9 | 2007 | |
J Y LEE | 9 | 2003 | |
M MORCRETTE | 9 | 2003 | |
S KOMABA | 9 | 2000 | |
YANGKOOK SUN | 9 | 2009 | |
T ISHIHARA | 9 | 2003 | |
AKITOSHI HAYASHI | 8 | 2007 | |
H J AHN | 7 | 2003 | |
J K KIM | 7 | 2005 | |
J R DAHN | 7 | 2000 | |
Y TAKITA | 7 | 2000 | |
3 | JUN CHEN | 78 | 2010 |
JIGUANG ZHANG | 76 | 2010 | |
YANGKOOK SUN | 65 | 2010 | |
HAOSHEN ZHOU | 63 | 2010 | |
ARUMUGAM | 62 | 2012 | |
MANTHIRAM | |||
KHALIL AMINE | 61 | 2010 | |
KISUK KANG | 60 | 2010 | |
QIANG ZHANG | 56 | 2016 | |
JUN LIU | 56 | 2011 | |
LIQUAN CHEN | 54 | 2011 | |
HONG LI | 54 | 2011 | |
JOHN B GOODENOUGH | 49 | 2010 | |
FENG WU | 47 | 2010 |
Table 2
Papers published number of countries/regions at three stages"
阶段 | 主要国家 | 发文篇数 | 发文起始时间 |
---|---|---|---|
1 | JAPAN | 37 | 1997 |
USA | 10 | 1997 | |
FRANCE | 5 | 1997 | |
SOUTH KOREA | 4 | 1990 | |
PEOPLES R CHINA | 3 | 1990 | |
ITALY | 3 | 1997 | |
GERMANY | 2 | 1997 | |
SPAIN | 2 | 1997 | |
BULGARIA | 2 | 1997 | |
CANADA | 1 | 1997 | |
2 | JAPAN | 255 | 2000 |
USA | 195 | 2000 | |
PEOPLES R CHINA | 175 | 2000 | |
SOUTH KOREA | 170 | 2000 | |
FRANCE | 95 | 2000 | |
INDIA | 37 | 2000 | |
GERMANY | 33 | 2000 | |
CANADA | 31 | 2000 | |
TAIWAN | 25 | 2000 | |
ISRAEL | 26 | 2000 | |
SPAIN | 19 | 2000 | |
AUSTRALIA | 18 | 2000 | |
3 | PEOPLES R CHINA | 3525 | 2010 |
USA | 1855 | 2010 | |
SOUTH KOREA | 1129 | 2010 | |
JAPAN | 909 | 2010 | |
GERMANY | 479 | 2010 | |
INDIA | 346 | 2010 | |
AUSTRALIA | 287 | 2010 | |
FRANCE | 258 | 2010 | |
CANADA | 217 | 2010 | |
SINGAPORE | 179 | 2010 | |
ENGLAND | 175 | 2010 | |
SPAIN | 138 | 2010 | |
ITALY | 103 | 2010 | |
TAIWAN | 88 | 2010 | |
SWEDEN | 80 | 2010 |
1 | 杨经纬, 张宁, 王毅, 等. 面向可再生能源消纳的多能源系统: 述评与展望[J]. 电力系统自动化, 2018, 42(4): 11-24. |
YANG J W, ZHANG N, WANG Y, et al. Multi-energy system towards renewable energy accommodation: Review and prospect[J]. Automation of Electric Power Systems, 2018, 42(4): 11-24. | |
2 | 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015: 57-64. |
LIU Z Y. Global energy internet[M]. Beijing: China Electric Power Press, 2015: 57-64. | |
3 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 45(7179): 652-657. |
4 | 陈龙, 池上森, 董源, 等. 全固态锂电池关键材料—固态电解质研究进展[J]. 硅酸盐学报, 2018, 46(1): 21-34. |
CHEN L, CHI S S, DONG Y, et al. Research progress of key materials for all-solid-state lithium batteries[J]. Journal of the Chinese Ceramic Society, 2018, 46(1): 21-34. | |
5 | 王鹏博, 郑俊超. 锂离子电池的发展现状及展望[J]. 自然杂志, 2017, 39(4): 283-289. |
WANG P B, ZHENG J C. The present situation and expectation of lithium-ion battery[J]. Chinese Journal of Nature, 2017, 39(4): 283-289. | |
6 | 李妙然, 樊珍娜. 我国绿色金融研究回顾与展望——基于Cite Space的可视化分析[J]. 金融发展研究, 2020(8): 86-88. |
LI M R, FAN Z N. Review and prospect of China's green finance research—Visual analysis based on Cite Space[J]. Journal of Financial Development Research, 2020(8): 86-88. | |
7 | 孟庆麟, 刘巍. 基于CSSCI文献的新闻出版知识图谱分析[J]. 出版科学, 2019, 27(3): 21-26. |
MENG Q L, LIU W. Analysis of news publishing knowledge map based on CSSCI literature[J]. Publishing Journal, 2019, 27(3): 21-26. | |
8 | 陈大洋, 宗曾艳, 熊丹, 等. 基于Cite Space的鼻咽癌研究文献计量学分析[J]. 肿瘤防治研究, 2020, 47(8): 596-599. |
CHEN D Y, ZONG Z Y, XIONG D, et al. Bibliometric analysis of nasopharyngeal carcinoma based on Cite Space[J]. Cancer Research on Prevention and Treatment, 2020, 47(8): 596-599. | |
9 | 李凤侠, 张俊, 赵呈刚. 基于文献计量学的氢脆研究的演进、热点和趋势分析[J]. 材料导报, 2019, 33(z2): 488-496. |
LI F X, ZHANG J, ZHAO C G. Research progress, hotspots and trends of hydrogen embrittlement based on bibliometrics[J]. Materials Review, 2019, 33(z2): 488-496. | |
10 | CHEN C M, IBEKWE-SANJUAN F, HOU J H. The structure and dynamics of co-citation clusters: a multiple-perspective co-citation analysis[J]. Journal of the American Society for Information Science, 2010, 61(7): 1386-1409. |
11 | CHEN C M, CHEN Y, HOU J H, et al. Cite Space II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science, 2006, 57(3): 359-377. |
12 | CHEN C M. Searching for intellectual turning points: Progressive knowledge domain visualization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S 1): 5303-5310. |
13 | GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176. |
14 | PADHI A K, NANJUNDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1997, 144 (4): 1188-1194. |
15 | WANG D H, KOU R, CHOI D, et al, Ternary self-assembly of ordered metal oxide-graphene nanocomposites for electrochemical energy storage[J]. ACS Nano ,2010, 4 (3), 1587-1595. |
16 | 马莹. 湿法工艺在锂离子电池材料制备中的应用[J]. 矿冶工程, 2005, 25(1): 65-67. |
MA Y. Application of wet process in preparation of lithium ion battery materials[J]. Mining and Metallurgical Engineering, 2005, 25(1): 65-67. | |
17 | KIM Y J, HONG Y, MIN G K, et al. Li0.93[Li0.21Co0.25Mn0.51]O2 nanoparticles for lithium battery cathode material made by cationic exchange from K-birnessite[J]. Electrochemistry Communications, 2007, 9: 1041-1046. |
18 | 林晓园, 陈立宝, 王太宏. 共沉淀法制备LiNi0.5)Mn1.5O4正极材料及其性能[J]. 电源技术, 2010, 34(7: 644-646. |
LIN X Y, CHEN L B, WANG T H. Performance of LiNi0.5)Mn1.5O4 cathode material synthesized by coprecipitation method[J]. Chinese Journal of Power Sources, 2010, 34(7: 644-646. | |
19 | 吴士超, 郭云霞, 周建华, 等. 高温热处理对水热离子交换法制备钛酸锂纳米棒的结构和性能影响[J]. 无机材料学报, 2011, 26(2): 123-128. |
WU S C, GUO Y X, ZHOU J H, et al. Effect of heat-treatment temperature on the structure and properties of Li4Ti5O12 nanorods prepared by the hydrothermal ion exchange method[J]. Journal of Inorganic Materials, 2011, 26(2): 123-128. | |
20 | YANG M Y, TENG T, WU S. LiFePO4/carbon cathode material prepared by ultrasonic spray pyrolysis[J]. Journal of Power Sources, 2006, 159: 307-311. |
21 | XIA Y, FANG R, XIAO Z, et al. Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23782-23791. |
22 | CUI Y, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks[J]. Science, 2001, 291: 851-853. |
23 | CUI Y, WEI Q, PARK H, et al. Nanowire nanosensors for highly-sensitive, selective and integrated detection of biological and chemical species[J]. Science, 2001, 293: 1289-1292. |
24 | AN Y L, TIAN Y, WEI H, et al. Porosity-and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode[J]. Advanced Functional Materials, 2019, 30 (9): doi: 10.19799/adfm.201908721. |
25 | TIAN Y, AN Y L, WEI C L, et al. Flexible and Free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries[J]. ACS Nano 2019, 13 (10): 11676-11685. |
26 | TIAN Y, AN Y L, FENG J K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11 (10): 10004-10011. |
27 | AN Y, TIAN Y, WEI C, et al. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries[J]. ACS Nano, 2019, 13(12): 13690-13701. |
28 | TU Z Y, SNEHASHIS C, MICHAEL J. et al. Fast ion transport at solid-solid interfaces in hybrid battery anodes[J]. Nature Energy,2018, 3(5): 310-316. |
29 | GOODENOUGH J B. How we made the Li-ion rechargeable battery[J]. Nature Electronics, 2018, 1(3): 204-210. |
30 | LI Y, CHEN X, DOLOCAN A, et al. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J]. Journal of the American Chemical Society, 2018, 140(20): 6448-6455. |
31 | LI Y T, XU H H, CHIEN P, et al. A perovskite electrolyte that is stable in moist air for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2018, 130(28): 8723-8727. |
32 | GAO H C, XIN S, XUE L G, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4): 833-844. |
33 | NI J F, LI L. Self‐supported 3D array electrodes for sodium microbatteries[J]. Advanced Functional Materials, 2018, 28(3): doi: 10.19799/adfm.201704880. |
34 | NI J F, DAI A, YUAN Y F, et al. Three-dimensional microbatteries beyond lithium ion[J]. Matter, 2020, 2(3): 1366-1376. |
35 | UPLER H B, WILD A, SCHUBERT U S. Carbonyls: Powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015, 5(11): 1-34. |
36 | 陈军, 丁能文, 李之峰, 等. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301. |
CHEN J, DING N W, LI Z F, et al. Organic cathode material for lithium ion battery[J]. Progress in Chemistry, 2015, 27(9): 1291-1301. | |
37 | 王运灿, 罗琳, 刘钰, 等. 锂离子电池聚合物正极材料研究进展[J]. 化工进展, 2013, 32(1): 134-139. |
WANG Y C, LUO L, LIU Y, et al. Research development on polymer cathode material for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2013, 32(1): 134-139. | |
38 | 王诗文, 陶占良, 陈军. 锂离子电池有机共轭羰基化合物电极材料研究进展[J]. 科学通报, 2013, 58(31): 3132-3139. |
WANG S W, TAO Z L, CHEN J. Organic conjugated carbonyl compounds as electrode materials for lithium-ion batteries[J]. Chinese Science Bulletin, 2013, 58(31): 3132-3139. |
[1] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[2] | Huakun HU, Xinli LI, Wendong XUE, Peng JIANG, Yong LI. Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(1): 379-396. |
[3] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wangsong KE, Wei CHEN. Analysis of the development trend and the innovation ability of an all-solid-state lithium battery technology [J]. Energy Storage Science and Technology, 2022, 11(1): 359-369. |
[4] | Jian TU, Xiongwen XU, Haibo HU, Yang NIE, Tao ZENG, Qiushi SUN, Hao CHENG, Jian XIE, Xinbing ZHAO. Fabrication of gel-type Li-ion batteries and their electrochemical and safety properties [J]. Energy Storage Science and Technology, 2021, 10(3): 1025-1031. |
[5] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[6] | CHEN Qimei, ZHENG Chunxiao, LI Haiying. Analysis on international development trend of energy storage technology based on bibliometrics [J]. Energy Storage Science and Technology, 2020, 9(1): 296-305. |
[7] | YAO Yu, LI Kefeng, XIE Qiao, ZHANG Xiaoxia. Research progress of high rate Li-ion battery materials [J]. Energy Storage Science and Technology, 2018, 7(S1): 1-7. |
[8] | ZHANG Jianjun, DONG Tiantian, YANG Jinfeng, ZHANG Min, CUI Guanglei. Research progress, challenge and perspective of all-solid-state polymer lithium batteries [J]. Energy Storage Science and Technology, 2018, 7(5): 861-868. |
[9] | ZHANG Xinjing1, CHEN Haisheng1,LIU Jinchao1,2,LI Wen 1,TAN Chunqing 1. Research progress in compressed air energy storage system: A review [J]. Energy Storage Science and Technology, 2012, 1(1): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||