Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 296-305.doi: 10.19799/j.cnki.2095-4239.2019.0168
Previous Articles Next Articles
CHEN Qimei1,2(), ZHENG Chunxiao1, LI Haiying1
Received:
2019-07-23
Revised:
2019-08-04
Online:
2020-01-05
Published:
2019-09-19
CLC Number:
CHEN Qimei, ZHENG Chunxiao, LI Haiying. Analysis on international development trend of energy storage technology based on bibliometrics[J]. Energy Storage Science and Technology, 2020, 9(1): 296-305.
Table 1
Disciplinary distribution of energy storage research"
排名 | 学科 | 论文数量/篇 | 占论文总量的比例/% |
---|---|---|---|
1 | 能源与燃料(energy fuels) | 32846 | 93 |
2 | 工程(engineering) | 13042 | 37 |
3 | 物理(physics) | 6718 | 19 |
4 | 数学(mathematics) | 6486 | 18 |
5 | 自动控制系统(automation control systems) | 6202 | 18 |
6 | 计算机科学(computer science) | 3718 | 11 |
7 | 材料科学(materials science) | 1921 | 5 |
8 | 力学(mechanics) | 1636 | 5 |
9 | 化学(chemistry) | 1510 | 4 |
10 | 电化学(electrochemistry) | 1317 | 4 |
11 | 经营经济学(business economics) | 1212 | 3 |
12 | 热力学(thermodynamics) | 1107 | 3 |
13 | 生态环境科学(environmental sciences ecology) | 1010 | 3 |
Table 3
Keywords of high-impact energy storage research papers"
关键词 | 出现频次 | 关键词 | 出现频次 |
---|---|---|---|
pcm | 328 | lithium ion battery | 36 |
battery | 243 | sodium ion battery | 35 |
phase change material | 235 | nanostructure | 34 |
cost | 216 | effectiveness | 34 |
electrode | 132 | cathode | 33 |
thermal energy storage | 104 | wind | 33 |
supercapacitor | 97 | Li ion battery | 32 |
stability | 91 | high energy density | 30 |
grid | 84 | nanoparticle | 30 |
latent heat | 78 | electrochemical energy storage | 29 |
composite | 77 | electrochemical performance | 29 |
microgrid | 76 | pcms | 29 |
energy storage device | 71 | energy management | 28 |
ess | 67 | control strategy | 28 |
integration | 66 | energy storage application | 27 |
graphene | 64 | battery storage | 26 |
thermal conductivity | 64 | catalyst | 25 |
electrode material | 62 | power density | 25 |
paraffin | 62 | pmma | 25 |
algorithm | 61 | battery energy storage system | 24 |
composite pcm | 58 | smart grid | 24 |
renewable energy | 55 | thermal stability | 23 |
emission | 53 | thermal energy storage system | 22 |
reliability | 53 | carbon material | 20 |
mechanism | 49 | polymer | 20 |
renewable energy source | 47 | wind power | 20 |
electrolyte | 46 | dsc | 19 |
electric vehicle | 44 | peg | 19 |
nanocomposite | 43 | smes | 19 |
microcapsule | 43 | redox flow battery | 18 |
vehicle | 42 | cchp system | 14 |
energy density | 41 | phev | 14 |
nanomaterial | 38 | chp | 12 |
simulation | 38 | ems | 12 |
energy consumption | 38 | csp | 12 |
thermal property | 38 | hess | 12 |
low cost | 37 | csp plant | 11 |
Table 4
Research topics and representative keywords"
聚类号 | 研究主题 | 关键词 |
---|---|---|
#1 | 电化学储能 | battery storage; electrode; nanomaterial; supercapacitor; stability; high energy density; lithium ion battery; graphene; electrochemical performance; mechanism; electrolyte; low cost; sodium ion battery; cathode; catalyst; power density; polymer; redox flow battery |
#2 | 可再生能源微电网储能技术 | cost; model; micro/smart grid; integration; algorithm; renewable energy; emission; simulation; effectiveness; wind power; energy management |
#3 | 相变储能材料 | phase change material (PCM); latent heat; composite pcm; thermal conductivity; thermal reliability; paraffin; microcapsule; differential scanning calorimetry (DSC); Microencapsulated phase change material (MPCM); Phase change energy storage (PEG) |
#4 | 蓄热系统 | thermal energy storage; energy consumption; thermal property; Combined Cooling, Heating and Power (CCHP); Concentrating Solar Power (CSP) |
#5 | 混合储能系统 | Hybrid Energy Storage System (HESS); electric vehicle; control strategy; superconducting magnetic energy storage (SMES); plug-in hybrid electric vehicle (PHEV) |
1 | ARGYROU M C, CHRISTODOULIDES P, KALOGIROU S A. Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 804-821. |
2 | 陈永翀. 储能未来的技术发展路径[J]. 能源, 2019(1): 84-85. |
CHEN Yuchong. Technological development path of energy storage in the future[J]. Energy, 2019(1): 84-85. | |
3 | 张宇, 俞国勤, 施明融, 等. 电力储能技术应用前景分析[J]. 华东电力, 2008(4): 91-93. |
ZHANG Yu, YU Guoqin, SHI Mingrong, et al. Application prospect analysis of electric energy storage technology[J]. East China Electric Power, 2008(4): 91-93. | |
4 | RICCARDO A R, CASSONE E, DISTASO E, et al. Overview on recent developments in energy storage: Mechanical, electrochemical and hydrogen technologies[J]. Energy Conversion and Management, 2017, 132(2): 372-387. |
5 | GUNEY M S, TEPE Y. Classification and assessment of energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2017, 75(8): 1187-1197. |
6 | EFTEKHARI A, FANG B Z. Electrochemical hydrogen storage: Opportunities for fuel storage, batteries, fuel cells, and supercapacitors[J]. International Journal of Hydrogen Energy, 2017, 42(40): 25143-25165. |
7 | RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy, 2018, 52(10): 441-473. |
8 | MAHLIA T M I, SAKTISAHDAN T J, JANNIFAR A, et al. A review of available methods and development on energy storage; technology update[J]. Renewable and Sustainable Energy Reviews, 2014, 33(5): 532-545. |
9 | POONAM K S, ARORA A. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage, 2019, 21(1): 801-825. |
10 | LIU H, YU H J. Ionic liquids for electrochemical energy storage devices applications[J]. Journal of Materials Science & Technology, 2019, 35(4): 674-686. |
11 | 王海焦, 黄锐娜, 王小俊, 等. 基于VOSviewer的富血小板血浆研究热点主题分析[J]. 中国组织工程研究, 2019, 23(18): 2947-2952. |
WANG Haijiao, HUANG Ruina, WANG Xiaojun, et al. Topic analysis of platelet-rich plasma research based on VOSviewer[J]. Chinese Journal of Tissue Engineering Research, 2019, 23(18): 2947-2952. | |
12 | TOPALLI M, IVANAJ S. Mapping the evolution of the impact of economic transition on central and eastern european enterprises: A co-word analysis[J]. Journal of World Business, 2016, 51(5): 744-759. |
13 | 李先锋, 张洪章, 郑琼, 等. 能源革命中的电化学储能技术[J]. 中国科学院院刊, 2019, 34(4): 443-449. |
LI Xianfeng, ZHANG Hongzhang, ZHENG Qiong, et al. Electrochemical energy storage technology in energy revolution[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 443-449. | |
14 | LEE J, SRIMUK P, FLEISCHMANN S, et al. Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice[J]. Progress in Materials Science, 2019, 101(3): 46-89. |
15 | 贺钟灵. 微电网电池储能技术经济分析[J]. 现代工业经济和信息化, 2018, 8(17): 9-11. |
HE Zhongling. Technical and economic analysis of battery energy storage in microgrid[J]. Modern Industrial Economy and Informationization, 2018, 8(17): 9-11. | |
16 | 林伯强. 中国可再生能源+储能模式机遇和挑战并存[N]. 第一财经日报, 2019-05-07(A11. |
LIN Boqiang. China's renewable energy + energy storage model:opportunities and challenges[N]. First Financial Daily, 2019-05-07(A11. | |
17 | LIN Yaxue, ALVA G, FANG Guiyin. Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials[J]. Energy, 2018, 165(A): 685-708. |
18 | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
19 | HAJIAGHASIA S, AHMAD S. Hybrid energy storage system for microgrids applications: A review[J]. Journal of Energy Storage, 2019, 21(1): 543-570. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xu HU, Han JIANG, Rui ZHANG. Energy transition and hydrogen development prospects in Saudi Arabia [J]. Energy Storage Science and Technology, 2022, 11(7): 2354-2365. |
[11] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[12] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[13] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[14] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[15] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||