Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (1): 287-295.doi: 10.12028/j.issn.2095-4239.2019.0167
Previous Articles Next Articles
ZHANG Wenjian1(), CUI Qingru1, LI Zhiqiang2(), YU Kang2
Received:
2019-07-23
Revised:
2019-08-22
Online:
2020-01-05
Published:
2020-01-10
CLC Number:
ZHANG Wenjian, CUI Qingru, LI Zhiqiang, YU Kang. Application of electrochemical energy storage in power generation[J]. Energy Storage Science and Technology, 2020, 9(1): 287-295.
Table 1
Common lithium-ion battery technology comparison"
名称 | 钴酸锂(LiCoO2) | 锰酸锂(LiMn2O4) | 三元锂 | 磷酸铁锂(LiFePO4) | 钛酸锂(Li4Ti5O12)[ | |
---|---|---|---|---|---|---|
镍钴锰酸锂(LiNiMnCoO2或NMC) | 镍钴铝酸锂(LiNiCoAlO2或称NCA) | |||||
电压 | 标称值3.60 V;典型工作范围3.0~4.2 V | 标称值3.70 V;典型工作范围3.0~4.2 V | 标称值3.60 V;典型工作范围3.0~4.2 V | 标称值3.60 V;典型工作范围3.0~4.2 V | 标称值3.20 V;典型工作范围2.5~3.65 V | 标称值2.40 V;典型工作范围1.8~2.85 V |
比能(容量) | 150~200 W·h/kg特种电池提供高达240 W·h/kg | 100~150 W·h/kg | 150~220 W·h/kg | 200~260 W·h/kg;预测可以达300 W·h/kg | 90~120 W·h/kg | 50~80 W·h/kg |
充电 (C率) | 0.7~1 C,充电至4.20 V(大部分电池);1C以上的充电电流会缩短电池寿命 | 典型值为0.7~1C,最大值为3 C,充电至4.20 V(大部分电池) | 0.7~1 C,充电至4.20 V,一些至4.30 V;1C以上的充电电流会缩短电池寿命 | 0.7 C,充电至4.20 V(大多数电池),一些电池可以快速充电 | 1 C典型,充电至3.65 V;功率型目前最大4 C | 1 C典型;最大5 C,充电至2.85 V |
放电 (C率) | 1 C;放电截止电压2.50 V | 1 C;2.50 V截止 | 1 C;2 C可能在某些电芯上可行;2.50 V截止 | 1 C典型;截止3.00 V | 1C,2.5C在一些电芯上可行;2.50 V截止 | 10 C可达,截止电压1.80 V |
循环寿命 | 500~1000,与放电深度、负荷、温度有关 | 300~700(与放电深度、温度有关) | 1000~2000(与放电深度、温度有关) | 500(与放电深度、温度有关) | 1000~2000(与放电深度、温度有关) | 3000~7000 |
热失控 | 150 ℃(302 ℉)。满充状态容易带来热失控 | 典型值为250 ℃(482 ℉)。高电荷促进热失控 | 典型的210 ℃(410 ℉)。高电荷促进热失控 | 典型值为150 ℃(302 ℉),高电荷会导致热失控 | 270 ℃(518 ℉)即使充满电,电池也非常安全 | 一种最安全的锂离子电池 |
Table 2
New lithium ion battery"
种类 | 优势 | 待解决问题 |
---|---|---|
固态锂离子电池 | ①安全性能更加可靠:固态电解质相比于有机电解液安全性更高; ②功率密度高:固体锂离子传导率高于液体电解液。 | ①固态电解质与正负极界面以及正负极内部等的传质过慢;②急需突破电极与固体电解质膜的大面积、高速度制造等电芯技术[ |
锂空气电池 | 能量密度高:理论能量密度11140 W·h/kg,实际应用可达1700 W·h/kg [ | ①空气电极孔道堵塞问题;②电解液易挥发、反应;③正极反应需要催化剂。 |
锂硫电池 | ①理论容量高;②安全性能好;③价格低廉;④环保性能高。 | ①导电性和导锂性差;②多硫化锂穿梭效应;③体积膨胀。 |
Table 3
Other chemical batteries"
类别 | 特点 | 电力应用场景 | 国内主要厂商及应用 |
---|---|---|---|
液流电池 | ①高倍率的充放电性能;②没有环保隐患;③安全性高,无潜在爆炸危险。 | ①可再生能源并网;②城市电网储能;③UPS系统[ | ①大连融科:200 MW/800 MW·h大连液流电池储能调峰电站国家示范项目 (在建);②普能世纪:10 MW/40 MW·h湖北枣阳光储用一体化示范项目(在建) |
铅酸电池 | ①安全性较为优越;②循环寿命低;③自放电率高;④回收过程中可能产生环境污染。 | ①UPS系统;②削峰填谷;③变电站事故电源。 | ①天能集团:江苏沭阳0.6 MW/4 MW·h用户侧储能电站;②圣阳电源:西藏光储柴(油)微网电站工程(36 MW·h);③南都电源:张北风光储示范工程(2 MW·h) |
钠流电池 | ①理论比能量高达760 W·h/kg,实际可达150 W·h/kg;②没有自放电现象。放电效率几乎可达100%[ | ①电网辅助服务; ②可再生能源并网; ③削峰填谷。 | 上海市电力公司与上海硅酸盐研究所:已贯通2 MW中试线,100 kW/800 kW·h上海世博园智能电网项目。 |
1 | 陈海生, 刘畅, 齐智平. 分布式储能的发展现状与趋势[J]. 中国科学院院刊, 2016, 31(2): 224-231. |
CHEN Haisheng, LIU Chang, QI Zhiping. Developing trend and present status of distributed energy storage[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(2): 224-231. | |
2 | 赵晏强, 周伯柱, 仇华炳. 国际储能关键技术竞争态势[J]. 科技促进发展, 2017, 13(10): 745-751. |
ZHAO Yanqiang, ZHOU Bozhu, QIU Huabing. The trends of energy storage technology[J]. Science & Technology for Development, 2017, 13(10): 745-751. | |
3 | 中关村储能产业技术联盟. 储能产业趋势第95期[EB/OL]. [2019-3-8]. . |
4 | 邹德天, 潘燕, 吴贝科, 等. 比亚迪电力储能设备与电动汽车应用现状分析[J]. 供用电, 2018, 35(9): 53-61. |
ZOU Detian, PAN Yan, WU Beike,et al. Application status analysis of BYD power storage equipment and electric vehicle[J]. Distribution & Utilization, 2018, 35(9): 53-61. | |
5 | 王宁, 刘晓峰, 陈泽华. 锂离子电池寿命预测综述[J]. 电器与能效管理技术, 2018(11): 1-13. |
WANG Ning, LIU Xiaofeng, CHEN Zehua. Survey on lithium-ion battery life estimation[J]. Electrical & Energy Management Technology, 2018(11): 1-13. | |
6 | 景梦华. 影响锂-聚苯胺二次电池性能因素的研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
JING Menghua. A research on factors that influence the performance of lithium-polyaniline secondary battery[D]. Harbin: Harbin Institute of Technology, 2016. | |
7 | 王薛超, 曹耀光, 金茂菁. 固态锂电池技术发展现状与趋势[J]. 科技中国, 2018(1): 7-9. |
WANG Xuechao, CAO Yaoguang, JIN Maojing. Development status and trend of solid lithium battery technology[J]. China Scitechnology Business, 2018(1): 7-9. | |
8 | 南彩云, 张宇, 李玉峰, 等. 锂电池正极材料工作原理[J]. 化学工程与装备, 2018(1): 208-211+228. |
Caiyun NAN, ZHANG Yu, LI Yufeng, et al. Lithium battery cathode material working principle[J]. Chemical Engineering & Equipment, 2018(1): 208-211+228. | |
9 | 张华民, 张立群, 赖秦志. 一种锌/多卤化物储能电池: CN 201010563789.3[P]. 2012-05-30. |
ZHANG Huamin, ZHANG Liqun, LAI Qinzhi. Zinc/polyhalide energy storage battery: CN 201010563789.3[P]. 2012-05-30. | |
10 | 钱伯章, 朱建芳. 大容量储能技术和产业发展的新动态[J]. 电力与能源, 2012, 33(3): 271-274. |
QIAN Bozhang, ZHU Jianfang. The latest developments in domestic and international large-capacity storage technology and industrial development[J]. Power & Energy, 2012, 33(3): 271-274. | |
11 | 刘肃力, 孙洋洲, 张敏吉, 等. 化学电源储能技术研究进展与发展趋势分析[J]. 电源技术, 2013, 37(8): 1481-1484. |
LIU Suli, SUN Yangzhou, ZHANG Minji, et al. Technology progress &development trends of several secondary batteries for energy storage applications[J]. Chinese Journal of Power Sources, 2013, 37(8): 1481-1484. | |
12 | 朱观炜. 基于多电池储能系统的微网离网控制技术研究[D]. 北京: 华北电力大学(北京), 2017. |
ZHU Guanwei. Research on off-grid control technology of microgrid based on multi-battery energy storage system[D]. Beijing: North China Electric Power University (Beijing), 2017. | |
13 | 张萌萌. 节能型智能化供电模式的应用[D]. 青岛: 青岛大学, 2016.ZHANG Mengmeng. Application of energy-saving intelligent power supply mode[D]. Qingdao: Qingdao University, 2016. |
14 | 刘崇宇. 用于风储联合发电的储能监控系统设计[D]. 南京: 东南大学, 2015. |
LIU Chongyu. Design of energy storage monitoring system for wind power generation with energy storage system[D]. Nanjing: Southeast University, 2015. | |
15 | 张洁喜, 刘彦呈. 基于UC3907和SG3525A大功率开关电源的设计[J]. 电气自动化, 2013, 35(2): 89-91. |
ZHANG Jiexi, LIU Yancheng. Design of the high-power switching power supply based on UC3907 And SG3525A[J]. Electrical Automation, 2013, 35(2): 89-91. | |
16 | 李建成. 大功率电源电池组能量管理系统设计与应用[D]. 长沙: 湖南大学, 2013. |
LI Jiancheng. The design and application of battery management system for high-power supply[D]. Changsha: Hunan University, 2013. | |
17 | 曲锋. 基于B/S模式的微电网能量管理软件的设计与实现[D]. 成都: 电子科技大学, 2007. |
QU Feng. Design and implementation of microgrid energy management software based on B/S mode[D]. Chengdu: University of Electronic Science and Technology of China, 2007. | |
18 | 刘素琴, 王成, 黄可龙, 等. 联吡啶铁(Ⅱ)在氧化还原液流电池中的应用研究[J]. 电源技术, 2010, 34(2): 164-166. |
LIU Suqin, WANG Cheng, HUANG Kelong, et al. Study of Fe(bpy)2+ for redox flow battery application[J]. Chinese Journal of Power Sources, 2010, 34(2): 164-166. | |
19 | 李飞. 储能系统辅助火电机组调频的建模及控制策略研究[D]. 北京: 华北电力大学(北京), 2017. |
LI Fei. Research on the modelling and control strategy of energy storage system in thermal power unit frequency regulation[D]. Beijing: North China Electric Power University (Beijing), 2017. | |
20 | 邵忠卫, 李国良, 刘文伟. 火电联合储能调频技术的研究与应用[J]. 山西电力, 2017(6): 62-66. |
SHAO Zhongwei, LI Guoliang, LIU Wenwei. Research and application of BESS-aided thermal power frequency-regulation technology[J]. Shanxi Electric Power, 2017(6): 62-66. | |
21 | 赵彪, 宋强, 刘文华, 等. 用于柔性直流配电的高频链直流固态变压器[J]. 中国电机工程学报, 2014, 34(25): 4295-4303. |
ZHAO Biao, SONG Qiang, LIU Wenhua, et al. High-frequency-link DC solid state transformers for flexible DC distribution[J]. Proceedings of the CSEE, 2014, 34(25): 4295-4303. | |
22 | 刘晓臣. 超级电容器工作原理及应用[J]. 电子产品可靠性与环境试验, 2012, 30(S1): 111-114. |
LIU Xiaochen. Principle and application of super capacitors[J]. Electronic Product Reliability and Environmental Testing, 2012, 30(S1): 111-114. | |
23 | 李超, 王洪涛, 韦仲康, 等. 含大型风电场的弱同步电网协调控制策略[J]. 电力自动化设备, 2015, 35(4): 96-103. |
LI Chao, WANG Hongtao, WEI Zhongkang, et al. Coordinated control of weakly-synchronized grid containing large wind farms[J]. Electric Power Automation Equipment, 2015, 35(4): 96-103. | |
24 | 牛毅, 刘继春, 王冬. 智能配电网综合效益指标评估体系研究[J]. 分布式能源, 2016, 1(2): 35-43. |
NIU Yi, LIU Jichun, WANG Dong. Comprehensive benefits index assessment framework for smart distribution network[J]. Distributed Energy, 2016, 1(2): 35-43. | |
25 | 李建林. 分布式可再生能源领域中储能的应用现状及发展趋势[J]. 电气应用, 2018, 37(1): 6-9. |
LI Jianlin. Application status and development trend of energy storage in distributed renewable energy field[J]. Electrotechnical Application, 2018, 37(1): 6-9. | |
26 | 叶季蕾, 薛金花, 陶琼, 等. 面向电力系统应用的储能技术/经济性分析研究[J]. 电气应用, 2017, 36(16): 20-28. |
YE Jilei, XUE Jinhua, TAO Qiong, et al. Energy storage technology/economic analysis for power system applications[J]. Electrotechnical Application, 2017, 36(16): 20-28. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[3] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[10] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[11] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[12] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[14] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
[15] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||