Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 627-648.doi: 10.12028/j.issn.2095-4239.2016.0020
Previous Articles Next Articles
DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei
Received:
2016-06-01
Revised:
2016-06-19
Online:
2016-09-01
Published:
2016-09-01
DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends[J]. Energy Storage Science and Technology, 2016, 5(5): 627-648.
[1] QUARTARONE E,MUSTARELLI P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Reviews,2011,40(5):2525-2540. [2] GOODENOUGH J B,PARK K S. The Li-ion rechargeable battery:A perspective[J]. Journal of the American Chemical Society,2013,135(4):1167-1176. [3] HALLINAN J D T,BALSARA N P. Polymer electrolytes[J]. Annual Review of Materials Research,2013,43:503-525. [4] FARRINGTON G C,BRIANT J L. Fast ionic transport in solids[J]. Science,1979,204(4400):1371-1379. [5] SCROSATI B,CROCE F,PANERO S. Progress in lithium polymer battery R&D[J]. Journal of Power Sources,2001,100(1):93-100. [6] APPETECCHI G,CROCE F,PERSI L,et al. Transport and interfacial properties of composite polymer electrolytes[J]. Electrochimica Acta,2000,45(8):1481-1490. [7] BORODIN O,SMITH G D. Mechanism of ion transport in amorphous poly(ethylene oxide)/LiTFSI from molecular dynamics simulations[J]. Macromolecules,2006,39(4):1620-1629. [8] BRANDELL D,PRIIMÄGI P,KASEM GI H,et al. Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes:A molecular dynamics study[J]. Electrochimica Acta,2011,57:228-236. [9] DO C,LUNKENHEIMER P,DIDDENS D,et al. Li+ transport in poly(ethylene oxide) based electrolytes:Neutron scattering, dielectric spectroscopy, and molecular dynamics simulations[J]. Physical Review Letters,2013,111(1):429-440. [10] WRIGHT P V. Polymer electrolytes—The early days[J]. Electrochimica Acta,1998,43(10):1137-1143. [11] ZHANG J,YUE L,HU P,et al. Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries[J]. Scientific Reports,2013, 4(6272):doi:10.1038/srep06272. [12] YOUNG N P,DEVAUX D,KHURANA R,et al. Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries[J]. Solid State Ionics,2014,263:87-94. [13] UNO T,KAWAGUCHI S,KUBO M,et al. Ionic conductivity and thermal property of solid hybrid polymer electrolyte composed of oligo (ethylene oxide) unit and butyrolactone unit[J]. Journal of Power Sources,2008,178(2):716-722. [14] HAN P,ZHU Y,LIU J. An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method[J]. Journal of Power Sources,2015,284:459-465. [15] PORCARELLI L,GERBALDI C,BELLA F,et al. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries[J]. Scientific Reports,2016,6(14):doi:10.1038/srep19892. [16] CROCE F,APPETECCHI G,PERSI L,et al. Nanocomposite polymer electrolytes for lithium batteries[J]. Nature,1998,394(6692):456-458. [17] QUARTARONE E,MUSTARELLI P,MAGISTRIS A. PEO-based composite polymer electrolytes[J]. Solid State Ionics,1998,110(1):1-14. [18] LI Q,SUN H,TAKEDA Y,et al. Interface properties between a lithium metal electrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. Journal of Power Sources,2001,94(2):201-205. [19] WESTON J,STEELE B. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes[J]. Solid State Ionics,1982,7(1):75-79. [20] WIECZOREK W,RADUCHA D,ZALEWSKA A,et al. Effect of salt concentration on the conductivity of PEO-based composite polymeric electrolytes[J]. The Journal of Physical Chemistry B,1998,102(44):8725-8731. [21] CROCE F,PERSI L,SCROSATI B,et al. Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes[J]. Electrochimica Acta,2001,46(16):2457-2461. [22] REICHE A,STEURICH T,SANDNER B,et al. Ion transport in gel electrolytes[J]. Electrochimica Acta,1995,40(13):2153-2157. [23] CAPIGLIA C,YANG J,IMANISHI N,et al. Composite polymer electrolyte:The role of filler grain size[J]. Solid State Ionics,2002,154:7-14. [24] ITOH T,MIYAMURA Y,ICHIKAWA Y,et al. Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer[J]. Journal of Power Sources,2003,119:403-408. [25] ITO Y,KAWAKUBO M,UENO M,et al. Carbon anodes for solid polymer electrolyte lithium-ion batteries[J]. Journal of Power Sources,2012,214:84-90. [26] CROCE F,SETTIMI L,SCROSATI B. Superacid ZrO2-added, composite polymer electrolytes with improved transport properties[J]. Electrochemistry Communications,2006,8(2):364-368. [27] ZHANG J,HUANG X,WEI H,et al. Effect of surface modified porous inorganic-organic hybrid polyphosphazene nanotubes on the properties of polyethylene oxide based solid polymer electrolytes[J]. Electrochimica Acta,2010,55(20):5966-5974. [28] ZHANG J,HUANG X,WEI H,et al. Enhanced electrochemical properties of polyethylene oxide-based composite solid polymer electrolytes with porous inorganic-organic hybrid polyphosphazene nanotubes as fillers[J]. Journal of Solid State Electrochemistry,2012,16(1):101-107. [29] VOIGT N,VAN W,LLEN L. The effect of plastic-crystalline succinonitrile on the electrolyte system PEO︰LiBF4︰Insights from solid state NMR[J]. Solid State Ionics,2014,260:65-75. [30] DERRIEN G,HASSOUN J,SACCHETTI S,et al. Nanocomposite PEO-based polymer electrolyte using a highly porous, super acid zirconia filler[J]. Solid State Ionics,2009,180(23):1267-1271. [31] ANGULAKSHMI N,NAHM K,NAIR J R,et al. Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries[J]. Electrochimica Acta,2013,90:179-185. [32] CHAE H K,SIBERIO-PÉREZ D Y,KIM J,et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature,2004,427(6974):523-527. [33] WANG X L,MEI A,LI M,et al. Polymer composite electrolytes containing ionically active mesoporous SiO2 particles[J]. Journal of Applied Physics,2007,102(5):774-778. [34] YUAN C,LI J,HAN P,et al. Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nano-sized metal-organic framework[J]. Journal of Power Sources,2013,240:653-658. [35] ZHU K,LIU Y,LIU J. A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte[J]. RSC Advances,2014,4(80):42278-42284. [36] GERBALDI C,NAIR J R,KULANDAINATHAN M A,et al. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. Journal of Materials Chemistry A,2014,2(26):9948-9954. [37] MASOUD E,EL-BELLIHI A A,BAYOUMY W,et al. Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite[J]. Materials Research Bulletin,2013,48(3):1148-1154. [38] KUMAR J,RODRIGUES S J,KUMAR B. Interface-mediated electrochemical effects in lithium/polymer-ceramic cells[J]. Journal of Power Sources,2010,195(1):327-334. [39] HU L,TANG Z,ZHANG Z. New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4[J]. Journal of Power Sources,2007,166(1):226-232. [40] PROSINI P P,CAREWSKA M,ALESSANDRINI F,et al. The two-phase battery concept:A new strategy for high performance lithium polymer batteries[J]. Journal of Power Sources,2001,97:786-789. [41] FORSYTH M,TIPTON A,SHRIVER D,et al. Ionic conductivity in poly(diethylene glycol-carbonate)/sodium triflate complexes[J]. Solid State Ionics,1997,99(3):257-261. [42] HOU W H,CHEN C Y,WANG C C. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group[J]. Polymer,2003,44(10):2983-2991. [43] ELM R A M,JANNASCH P. Synthesis and characterization of poly(ethylene oxide-co-ethylene carbonate) macromonomers and their use in the preparation of crosslinked polymer electrolytes[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(7):2195-2205. [44] JEON J D,KWAK S Y. Pore-filling solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes for rechargeable lithium batteries[J]. Journal of Membrane Science,2006,286(1):15-21. [45] JEON J D,KIM M J,KWAK S Y. Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P(VdF-HFP)/P(EO-EC) membranes[J]. Journal of Power Sources,2006,162(2):1304-1311. [46] KWON S J,KIM D G,SHIM J,et al. Preparation of organic/inorganic hybrid semi-interpenetrating network polymer electrolytes based on poly(ethylene oxide-co-ethylene carbonate) for all-solid-state lithium batteries at elevated temperatures[J]. Polymer,2014,55(12):2799-2808. [47] DARENSBOURG D J. Making plastics from carbon dioxide:Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2[J]. Chemical Reviews,2007,107(6):2388-2410. [48] OKUMURA T,NISHIMURA S. Lithium ion conductive properties of aliphatic polycarbonate[J]. Solid State Ionics,2014,267:68-73. [49] TOMINAGA Y,YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chemical Communications,2014,50(34):4448-4450. [50] KIMURA K,YAJIMA M,TOMINAGA Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature[J]. Electrochemistry Communications,2016,66:46-48. [51] ROKICKI G. Aliphatic cyclic carbonates and spiroorthocarbonates as monomers[J]. Progress in Polymer Science,2000,25(2):259-342. [52] BARBOSA P,RODRIGUES L,SILVA M M,et al. Characterization of pTMCn LiPF6 solid polymer electrolytes[J]. Solid State Ionics,2011,193(1):39-42. [53] SILVA M M,BARBOSA P,EVANS A,et al. Novel solid polymer electrolytes based on poly(trimethylene carbonate) and lithium hexafluoroantimonate[J]. Solid State Sciences,2006,8(11):1318-1321. [54] SUN B,MINDEMARK J,EDSTR M K,et al. Realization of high performance polycarbonate-based Li polymer batteries[J]. Electrochemistry Communications,2015,52:71-74. [55] SUN B,MINDEMARK J,EDSTR M K,et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics,2014,262:738-742. [56] MINDEMARK J,TöRMÄ E,SUN B,et al. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries[J]. Polymer,2015,63:91-98. [57] MINDEMARK J,SUN B,TÖRMÄ E,et al. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J]. Journal of Power Sources,2015,298:166-170. [58] MA X,CHANG P R,YU J,et al. Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites[J]. Carbohydrate Polymers,2008,71(2):229-234. [59] ZHANG J,LIU Z,KONG Q,et al. Renewable and superior thermal-resistant cellulose-based composite nonwoven as lithium-ion battery separator[J]. ACS Applied Materials & Interfaces,2012,5(1):128-134. [60] ZHANG J,ZHAO J,YUE L,et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Advanced Energy Materials,2015,5(24):doi: 10.1002/aenm.201501082. [61] SHIBATA M,KOBAYASHI T,YOSOMIYA R,et al. Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes[J]. European Polymer Journal,2000,36(3):485-490. [62] LIN Y,LI J,LAI Y,et al. A wider temperature range polymer electrolyte for all-solid-state lithium ion batteries[J]. RSC Advances,2013,3(27):10722-10730. [63] HOOPER R,LYONS L J,MAPES M K,et al. Highly conductive siloxane polymers[J]. Macromolecules,2001,34(4):931-936. [64] WANG F M,HU C C,LO S C,et al. The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J]. Solid State Ionics,2009,180(4/5):405-411. [65] WALKOWIAK M,SCHROEDER G,GIERCZYK B,et al. New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers[J]. Electrochemistry Communications,2007,9(7):1558-1562. [66] LI J,LIN Y,YAO H,et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. ChemSusChem,2014,7(7):1901-1908. [67] ZHANG Z,JIN J,BAUTISTA F,et al. Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes[J]. Solid State Ionics,2004,170(3):233-238. [68] KANG Y,LEE J,SUH D H,et al. A new polysiloxane based cross-linker for solid polymer electrolyte[J]. Journal of Power Sources,2005,146(1/2):391-396. [69] KANG Y,LEE J,LEE J I,et al. Ionic conductivity and electrochemical properties of cross-linked solid polymer electrolyte using star-shaped siloxane acrylate[J]. Journal of Power Sources,2007,165(1):92-96. [70] NODA K,YASUDA T,NISHI Y. Concept of polymer alloy electrolytes:Towards room temperature operation of lithium-polymer batteries[J]. Electrochimica Acta,2004,50(2/3):243-246. [71] OH B,VISSERS D,ZHANG Z,et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. Journal of Power Sources,2003,119(6):442-447. [72] 张恒,郑丽萍,聂进,等. 锂单离子导电固态聚合物电解质[J]. 化学进展,2014,26(6):1005-1020. ZHANG Heng,ZHENG Liping,NIE Jin,et al. Single lithium-ion conducting solid polymer electrolytes[J]. Progress in Chemistry,2014,26(6):1005-1020. [73] MEZIANE R,BONNET J P,COURTY M,et al. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries[J]. Electrochimica Acta,2011,57:14-19. [74] MA Q,ZHANG H,ZHOU C,et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion[J]. Angewandte Chemie International Edition,2016,55(7):2521-2525. [75] MA Q,XIA Y,FENG W,et al. Impact of functional group in polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrode[J]. RSC Advances,2016,6:32454-32461. [76] SHI Q,XUE L,QIN D,et al. Single ion solid-state composite electrolytes with high electrochemical stability based on a poly (perfluoroalkylsulfonyl)-imide ionene polymer[J]. Journal of Materials Chemistry A,2014,2(38):15952-15957. [77] ROHAN R,SUN Y,CAI W,et al. Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries[J]. Journal of Materials Chemistry A,2014,2(9):2960-2967. [78] LIU Y,ZHANG Y,PAN M,et al. A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly[J]. Journal of Membrane Science,2016,507:99-106. [79] BOUCHET R,MARIA S,MEZIANE R,et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries[J]. Nat. Mater.,2013,12(5):452-457. [80] INCEOGLU S,ROJAS A A,DEVAUX D,et al. Morphology- conductivity relationship of single-ion-conducting block copolymer electrolytes for lithium batteries[J]. ACS Macro Letters,2014,3(6):510-514. [81] YANG L Y,WEI D X,XU M,et al. Transferring lithium ions in nanochannels:A PEO/Li+ solid polymer electrolyte design[J]. Angewandte Chemie International Edition,2014,53(14):3631-3635. [82] GU Y,ZHANG S,MARTINETTI L,et al. High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking[J]. Journal of the American Chemical Society,2013,135(26):9652-9655. [83] ROLLAND J,POGGI E,VLAD A,et al. Single-ion diblock copolymers for solid-state polymer electrolytes[J]. Polymer,2015,68:344-352. [84] PAGE K A,SOLES C L,RUNT J P. Polymers for energy storage and delivery:Polyelectrolytes for batteries and fuel cells[M]. USA:Oxford University Press,2012. [85] BESNER S,VALL E A,BOUCHARD G,et al. Effect of anion polarization on conductivity behavior of poly(ethylene oxide) complexed with alkali salts[J]. Macromolecules,1992,25(24):6480-6488. [86] LIANG S,CHOI U H,LIU W,et al. Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates[J]. Chemistry of Materials,2012,24(12):2316-2323. [87] ROHAN R,PAREEK K,CHEN Z,et al. A high performance polysiloxane-based single ion conducting polymeric electrolyte membrane for application in lithium ion batteries[J]. J. Mater. Chem. A,2015,3(40):20267-20276. [88] LIANG Y,JI L,GUO B,et al. Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators[J]. Journal of Power Sources,2011,196(1):436-441. [89] CHO T H,TANAKA M,ONISHI H,et al. Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery[J]. Journal of Power Sources,2008,181(1):155-160. [90] WALKER C N,VERSEK C,TOUMINEN M,et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Letters,2012,1(6):737-741. [91] OSIŃSKA M,WALKOWIAK M,ZALEWSKA A,et al. Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes[J]. Journal of Membrane Science,2009,326(2):582-588. [92] YANG G,HAN H,DU C,et al. Facile synthesis of melamine-based porous polymer networks and their application for removal of aqueous mercury ions[J]. Polymer,2010,51(26):6193-6202. [93] ROHAN R,PAREEK K,CAI W,et al. Melamine- terephthalaldehyde-lithium complex:A porous organic network based single ion electrolyte for lithium ion batteries[J]. J. Mater. Chem. A,2015,3(9):5132-5139. [94] HUMBECK J F,AUBREY M L,ALSBAIEE A,et al. Tetraarylborate polymer networks as single-ion conducting solid electrolytes[J]. Chem. Sci.,2015,6(10):5499-5505. |
[1] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[2] | Jiayu YUAN, Xinguang LI, Wenchao WANG, Chengkuo FU. Simulation of serpentine cooling structure of battery pack considering mass flow [J]. Energy Storage Science and Technology, 2022, 11(7): 2274-2281. |
[3] | Peng HUANG, Zhigen NIE, Zheng CHEN, Xing SHU, Shiquan SHEN, Jipeng YANG, Jiangwei SHEN. Capacity prediction of lithium battery based on optimized Elman neural network [J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294. |
[4] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[5] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[6] | Suhang WANG, Jianlin LI, Yaxin LI, Junjie XIONG, Wei ZENG. Research on charging strategy of lithium-ion battery system at low temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1537-1542. |
[7] | Bowen CHEN, Ruiguang CUI, Yanbin SHEN, Liwei CHEN. Application of a novel method for characterization of local Young’s modulus in lithium (ion) batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 991-999. |
[8] | Xiang WANG, Jing XU, Yajun DING, Fan DING, Xin XU. Optimal design of liquid cooling pipeline for battery module based on VCALB [J]. Energy Storage Science and Technology, 2022, 11(2): 547-552. |
[9] | Yingkai WANG, Hong ZHANG, Xinghui WANG. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health [J]. Energy Storage Science and Technology, 2022, 11(1): 240-245. |
[10] | Zhiguo AN, Xian ZHANG, Hui ZHU, Chunjie ZHANG. Heat dissipation performance of honeycomb-like thermal management system combined CPCM with water cooling for lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 211-220. |
[11] | Xinyu CAO, Fei PENG, Liwei LI, Jianguang YIN. SOC estimation of lithium battery based on IBAS-NARX neural network model [J]. Energy Storage Science and Technology, 2021, 10(6): 2342-2351. |
[12] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[13] | Jianjiang XIE, Xiang GAO, Chengqiang XIA, Yi ZHENG, Hao WANG. Research on information acquisition system of lithium battery energy storage cabin [J]. Energy Storage Science and Technology, 2021, 10(3): 1109-1116. |
[14] | Miao JIANG, Hongli WAN, Gaozhan LIU, Wei WENG, Chao WANG, Xiayin YAO. Co0.1Fe0.9S2@Li7P3S11composite cathode material for all-solid-state lithium batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 925-930. |
[15] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||