1 |
YANG X L, GAO X L, ZHANG F T, et al. Experimental study on temperature difference between the interior and surface of Li[Ni1/3Co1/3Mn1/3]O2 prismatic lithium-ion batteries at natural convection and adiabatic condition[J]. Applied Thermal Engineering, 2021, 190: doi: 0.1016/j.applthermaleng.2021.116746.
|
2 |
NI P Y, WANG X L. Temperature field and temperature difference of a battery package for a hybrid car[J]. Case Studies in Thermal Engineering, 2020, 20: doi: 10.1016/j.csite.2020.100646.
|
3 |
CAO J H, LING Z Y, FANG X M, et al. Delayed liquid cooling strategy with phase change material to achieve high temperature uniformity of Li-ion battery under high-rate discharge[J]. Journal of Power Sources, 2020, 450: doi: 10.1016/j.jpowsour.2019.227673.
|
4 |
牛志远, 王怀铷, 金阳, 等. 不同倍率下磷酸铁锂电池模组过充热失控特性研究[J]. 电力工程技术, 2021, 40(4): 167-174.
|
|
NIU Z Y, WANG H R, JIN Y, et al. Overcharging and runaway characteristics of lithium iron phosphate battery modules at different rates[J]. Electric Power Engineering Technology, 2021, 40(4): 167-174.
|
5 |
ZHANG D, DEY S, TANG S X, et al. Battery internal temperature estimation via a semilinear thermal PDE model[J]. Automatica, 2021, 133: doi: 10.1016/j.automatica.2021.109849.
|
6 |
李生红, 熊震, 秦国锋, 等. 锂离子电池热模型研究概述[J]. 时代汽车, 2021(16): 99-101.
|
|
LI S H, XIONG Z, QIN G F, et al. Overview of research on thermal model of lithium-ion battery[J]. Auto Time, 2021(16): 99-101.
|
7 |
王翔,徐晶,陈新文,丁亚军,徐鑫. 基于VCHTC的锂电池热力学精细化仿真[J/OL].储能科学与技术, 2022, 11(1): 246-252.
|
|
WANG X, XU J, CHEN X W, DING Y J, XU X. Refined thermodynamic simulation of lithium battery based on VCHTC[J]. Energy Storage Science and Technology, 2022, 11(1): 246-252.
|
8 |
林裕旺, 王惜慧, 郭剑成, 等. 基于复合相变材料的电池包热管理研究[J]. 电源技术, 2021, 45(7): 881-884, 940.
|
|
LIN Y W, WANG X H, GUO J C, et al. Research on thermal management of battery pack based on composite phase change material[J]. Chinese Journal of Power Sources, 2021, 45(7): 881-884, 940.
|
9 |
袁航, 高强. 变接触面圆柱形锂电池组液冷散热的热特性[J]. 电源技术, 2021, 45(3): 302-304.
|
|
YUAN H, GAO Q. Thermal characteristics of liquid cooling of cylindrical lithium battery with variable contact surface[J]. Chinese Journal of Power Sources, 2021, 45(3): 302-304.
|
10 |
干年妃, 孙长乐, 刘东旭, 等. 变接触面液冷系统的电池模组温度一致性研究[J]. 湖南大学学报(自然科学版), 2020, 47(6): 34-42.
|
|
GAN N F, SUN C L, LIU D X, et al. Study on temperature consistency of battery module for liquid cooling system with variable contact surface[J]. Journal of Hunan University (Natural Sciences), 2020, 47(6): 34-42.
|
11 |
李潇, 陈江英, 李翔晟. 基于新型流道液冷板的动力电池热管理性能[J]. 电源技术, 2020, 44(10): 1438-1442.
|
|
LI X, CHEN J Y, LI X S. Study on thermal management performance of power batteries based on new flow passage liquid cooling plate[J]. Chinese Journal of Power Sources, 2020, 44(10): 1438-1442.
|
12 |
冯能莲, 董士康, 李德壮, 等. 蜂巢式液冷电池模块传热特性的试验研究[J]. 汽车工程, 2020, 42(5): 658-664.
|
|
FENG N L, DONG S K, LI D Z, et al. Experiment study on heat transfer characteristics of honeycomb liquid cooled battery module[J]. Automotive Engineering, 2020, 42(5): 658-664.
|
13 |
丁亚军, 徐晶, 丁凡, 等. 圆柱锂电池表面自然对流换热系数仿真估算[J]. 电源技术, 2020, 44(9): 1256-1259.
|
|
DING Y J, XU J, DING F, et al. Simulation and estimation of natural convection heat transfer coefficient on surface of cylindrical lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(9): 1256-1259.
|