Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (5): 649-658.doi: 10.12028/j.issn.2095-4239.2016.0030
Previous Articles Next Articles
XU Yangyang, LI Quanguo, LIANG Chengdu, LIN Zhan
Received:
2016-06-08
Revised:
2016-06-18
Online:
2016-09-01
Published:
2016-09-01
XU Yangyang, LI Quanguo, LIANG Chengdu, LIN Zhan. Research progress of solid electrolytes[J]. Energy Storage Science and Technology, 2016, 5(5): 649-658.
[1] LI X F,LIU J,BANIS M N,et al. Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application[J]. Energy & Environmental Science,2014,7(2):768-778. [2] CHEN R J,HUANG M,HUANG W Z,et al. Sol-gel derived Li-La-Zr-O thin films as solid electrolytes for lithium-ion batteries[J]. Journal of Materials Chemistry A,2014,2(33):13277-13282. [3] KOZEN A C,PEARSE A J,LIN C F,et al. Atomic layer deposition of the solid electrolyte LiPON[J]. Chemistry of Materials,2015,27(15):5324-5331. [4] TANG W S,UNEMOTO A,ZHOU W,et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy & Environmental Science,2015,8(12):3637-3645. [5] DENG Y,EAMES C,CHOTARD J N,et al. Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4- Li3PO4 solid electrolytes[J]. Journal of the American Chemical Society,2015,137(28):9136-9145. [6] ZHENG Z F,FANG H Z,YANG F,et al. Amorphous LiLaTiO3 as solid electrolyte material[J]. Journal of the Electrochemical Society,2014,161(4):A473-A479. [7] XIONG S Z,XIE K,BLOMBERG E,et al. Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries[J]. Journal of Power Sources,2014,252:150-155. [8] LEE S H,YOU H G,HAN K S,et al. A new approach to surface properties of solid electrolyte interphase on a graphite negative electrode[J]. Journal of Power Sources,2014,247:307-313. [9] BUCHTOVA N,GUYOMARDLACK A,LEBIDEAU J. Biopolymer based nanocomposite ionogels:High performance, sustainable and solid electrolytes[J]. Green Chemistry,2014,16(3):1149-1152. [10] BORDES A,EOM K,FULLER T F. The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes[J]. Journal of Power Sources,2014,257:163-169. [11] KIM J K,SCHEERS J,PARK T J,et al. Superior ion-conducting hybrid solid electrolyte for all-solid-state batteries[J]. ChemSusChem,2015,8(4):636-641. [12] PRADEL A,RIBES M. Electrical-properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching[J]. Solid State Ionics,1986,18-9:351-355. [13] KUHN A,GERBIG O,ZHU C B,et al. A new ultrafast superionic Li-conductor:Ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes[J]. Physical Chemistry Chemical Physics,2014,16(28):14669-14674. [14] LIN Z,LIANG C D. Lithium-sulfur batteries:From liquid to solid cells[J]. Journal of Materials Chemistry A,2015,3(3):936-958. [15] LIN Z,LIU Z C,DUDNEY N J,et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries[J]. ACS Nano,2013,7(3):2829-2833. [16] LIN Z,LIU Z C,FU W J,et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2013,23(8):1064-1069. [17] YAMANE H,SHIBATA M,SHIMANE Y,et al. [18] PHUC N H,MORIKAWA K,TOTANI M,et al. Chemical synthesis of Li3PS4 precursor suspension by liquid-phase shaking[J]. Solid State Ionics,2016,285:2-5. [19] MINAMI K,MIZUNO F,HAYASHI A,et al. Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method[J]. Solid State Ionics,2007,178(11/12):837-841. [20] LIU Z C,FU W J,PAYZANT E A,et al. Anomalous high ionic conductivity of nanoporous beta-Li3PS4[J]. Journal of the American Chemical Society,2013,135(3):975-978. [21] KATO A,NAGAO M,SAKUDA A,et al. Evaluation of young's modulus of Li2S-P2S5-P2O5 oxysulfide glass solid electrolytes[J]. Journal of the Ceramic Society of Japan,2014,122(1427):552-555. [22] MINAMI K,HAYASHI A,TATSUMISAGO M. Mechanochemical synthesis of Li2S-P2S5 glass electrolytes with lithium salts[J]. Solid State Ionics,2010,181(33/34):1505-1509. [23] MINAMI K,HAYASHI A,UJIIE S,et al. Electrical and electroc- hemical properties of glass-ceramic electrolytes in the systems Li2S-P2S5-P2S3 and Li2S-P2S5-P2O5[J]. Solid State Ionics,2011, 192(1):122-125. [24] TATSUMISAGO M. Glassy materials based on Li2S for all-solid-state lithium secondary batteries[J]. Solid State Ionics,2004,175( [25] MORIMOTO H,YAMASHITA H,TATSUMISAGO M,et al. Mechanochemical synthesis of the high lithium ion conductive amorphous materials in the systems Li2S-SiS2 and Li2S-SiS2-Li4SiO4[J]. Journal of the Ceramic Society of Japan,2000,108(2):128-131. [26] SAKAMOTO R,TATSUMISAGO M,MINAMI T. Preparation of fast lithium ion conducting glasses in the system Li2S-SiS2-Li3N[J]. Journal of Physical Chemistry B,1999,103(20):4029-4031. [27] HAYASHI A,KOMIYA R,TATSUMISAGO M,et al. Character- ization of Li2S-SiS2-Li3MO3 (M=B, [28] MORI K,FURUTA K,ONODERA Y,et al. Three-dimensional structures and lithium-ion conduction pathways of (Li2S)x(GeS2)100-x superionic glasses[J]. Solid State Ionics,2015,280:44-50. [29] ITO Y,SAKUDA A,OHTOMO T,et al. Preparation of Li2S-GeS2 solid electrolyte thin films using pulsed laser deposition[J]. Solid State Ionics,2013,236:1-4. [30] ITOH K,SONOBE M,MORI K,et al. Structural observation of Li2S-GeS2 superionic glasses[J].Physica B Condensed Matter,2006,385:520-522. [31] KIM Y,SAIENGA J,MARTIN S W. Anomalous ionic conductivity increase in Li2S+GeS2+GeO2 glasses[J]. Journal of Physical Chemistry B,2006,110(33):16318-16325. [32] KANNO R,HATA T,KAWAMOTO Y,et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics,2000,130(1/2):97-104. [33] YAMAMOTO H,MACHIDA N,SHIGEMATSU T. A mixed-former effect on lithium-ion conductivities of the Li2S-GeS2-P2S5 amorphous materials prepared by a high-energy ball-milling process[J]. Solid State Ionics,2004,175( [34] TREVEY J E,JUNG Y S,LEE S H. High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries[J]. Electrochimica Acta,2011,56(11):4243-4247. [35] HASSOUN J,VERRELLI R,REALE P,PANERO S,et al. A structural, spectroscopic and electrochemical study of a lithium ion conducting Li10GeP2S12 solid electrolyte[J]. Journal of Power Sources,2013,229:117-122. [36] MINAMI K,HAYASHI A,TATSUMISAGO M. Preparation and characterization of lithium ion conducting Li2S-P2S5-GeS2 glasses and glass-ceramics[J]. Journal of Non-Crystalline Solids,2010,356(44/45/46/47/48/49):2666-2669. [37] KANNO R,MARUYAMA M. Lithium ionic conductor thio- LISICON:The Li2S-GeS2-P2S5 system[J]. Journal of the Electrochemical Society,2001,148(7):A742-A746. [38] KUHN A,DUPPEL V,LOTSCH B V. Tetragonal Li10GeP2S12 and Li7GePS8-exploring the Li ion dynamics in LGPS Li electrolytes[J]. Energy & Environmental Science,2013,6(12):3548-3552. [39] WHITELEY J M,WOO J H,HU E Y,et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. Journal of the Electrochemical Society,2014,161(12):A1812-A1817. [40] ONG S P,MO Y,RICHARDS W D,et al. Phase stability, electrochemical stability and ionic conductivity of the Li10+1MP2X12 (M=Ge, Si, Sn, Al or P and X = O, S or Se) family of superionic conductors[J]. Energy & Environmental Science,2013,6(1):148-156. [41] BRON P,JOHANSSON S,ZICK K,et al. Li10SnP2S12:An affordable lithium superionic conductor[J]. Journal of the American Chemical Society,2013,135(42):15694-15697. [42] SAHU G,LIN Z,LI J C,et al. Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4[J]. Energy & Environmental Science,2014,7(3):1053-1058. [43] TREVEY J E,JUNG Y S,LEE S H. Preparation of Li2S-GeSe2-P2S5 electrolytes by a single step ball milling for all-solid-state lithium secondary batteries[J]. Journal of Power Sources,2010,195(15):4984-4989. [44] SAHU G,RANGASAMY E,LI J C,et al. A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy[J]. Journal of Materials Chemistry A,2014,2(27):10396-10403. [45] KATO Y,HORI S,SAITO T,et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nature Energy,2016,1(4):doi:10.1038/nenergy.2016.30. [46] HAYASHI A,MURAMATSU H,OHTOMO T,et al. Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries[J]. Journal of Alloys and Compounds,2014,591: 247-250. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[14] | SU Yaogang, WU Xiaonan, LIAO Borui, LI Shuang. Analysis of novel liquefied-air energy-storage system coupled with LNG cold energy and ORC [J]. Energy Storage Science and Technology, 2022, 11(6): 1996-2006. |
[15] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||