1 |
DU Mingjie, LIAO Kaiming, LU Qian, et al. Recent advances in the interface engineering of solid-state Li-ion batteries with artificial buffer layers: Challenges, materials, construction, and characterization[J]. Energy & Environmental Science, 2019, 12(6): 1780-1804.
|
2 |
FU Yanqing, WEI Qiliang, ZHANG Gaixia, et al. Advanced phosphorus-based materials for lithium/sodium-ion batteries: Recent developments and future perspectives[J]. Advanced Energy Materials, 2018, 8(13): doi: 10.1002/adma.201703058.
|
3 |
JIANG Kecheng, WU Xinglong, YIN Yaxia, et al. Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4858-4863.
|
4 |
ZHENG Yang, ZHOU Tengfei, ZHANG Chaofeng, et al. Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2016, 55(10): 3408-3413.
|
5 |
MA Kun, JIANG Hao, HU Yanjie, et al. 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries[J]. Advanced Functional Materials, 2018, 28(40): doi: 10.1002/adfm.201804306.
|
6 |
SHAN Tingtian, XIN Sen, YOU Ya, et al. Combining nitrogen-doped graphene sheets and MoS2: A unique film-foam-film structure for enhanced lithium storage[J]. Angewandte Chemie-International Edition, 2016, 55(41): 12783-12788.
|
7 |
WU Yaqian, YANG Huixian, YANG Yu, et al. SnS2/Co3S4 hollow nanocubes anchored on s-doped graphene for ultrafast and stable Na-ion storage [J]. Small, 2019, 15(46): doi: 10.1002/smll.201903873.
|
8 |
SUN Bing, XIONG Pan, MAITRA U, et al. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries[J]. Advanced Materials, 2020, 32(18): doi: 10.1002/adma.201903891.
|
9 |
ZHAO Bing, WANG Zhixuan, CHEN Fang, et al. Three-dimensional interconnected spherical graphene framework/sns nanocomposite for anode material with superior lithium storage performance: Complete reversibility of Li2S[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1407-1415.
|
10 |
WANG Gang, PENG Jun, ZHANG Lili, et al. Two-dimensional SnS2@PANI nanoplates with high capacity and excellent stability for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(7): 3659-3666.
|
11 |
WANG J, POLLEUX J, LIM J, et al. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles[J]. Journal of Physical Chemistry C, 2007, 111(40): 14925-14931.
|
12 |
JIANG Hao, REN Dayong, WANG Haifeng, et al. 2D monolayer MoS2-carbon interoverlapped superstructure: Engineering ideal atomic interface for lithium ion storage[J]. Advanced Materials, 2015, 27(24): 3687-3695.
|
13 |
MA Chunrong, DENG Changjian, LIAO Xiaozhen, et al. Nitrogen and phosphorus co-doped porous carbon framework as anode material for high rate lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 36969-36975.
|
14 |
LI Yuzhu, WANG Huanwen, WANG Libin, et al. Ultrafast Na+-storage in TiO2-coatedMoS2@N-doped carbon for high-energy sodium-ion hybrid capacitors[J]. Energy Storage Materials, 2019, 23: 95-104.
|
15 |
MA Chunrong, LI Xiang, DENG Changjian, et al. Coaxial carbon nanotube supported TiO2@MoO2@Carbon core-shell anode for ultrafast and high-capacity sodium ion storage[J]. ACS Nano, 2019, 13(1): 671-680.
|
16 |
YANG Fuhua, GAO Hong, HAO Junnan, et al. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries[J]. Advanced Functional Materials, 2019, 29(16): doi: 10.1002/adfm.201808291.
|
17 |
BAI Zhongchao, JU Zhicheng, GUO Chunli, et al. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries[J]. Nanoscale, 2014, 6(6): 3268-3273.
|
18 |
CHEN Zhi, YIN Dangui, ZHANG Ming. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries[J]. Small, 2018, 14(17): doi: 10.1002/smll.201703818.
|
19 |
YOUN D H, STAUFFER S K, XIAO Penghao, et al. Simple synthesis of nanocrystalline tin sulfide/N-doped reduced graphene oxide composites as lithium ion battery anodes[J]. ACS Nano, 2016, 10(12): 10778-10788.
|
20 |
SUN Yongming, LIU Nian, CUI Yi. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.71.
|
21 |
MA Chuze, XU Jing, ALVARADO J, et al. Investigating the energy storage mechanism of SnS2-rGO composite anode for advanced Na-ion batteries[J]. Chemistry of Materials, 2015, 27(16): 5633-5640.
|