Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 87-95.doi: 10.19799/j.cnki.2095-4239.2020.0271
• Energy Storage Materials and Devices • Previous Articles Next Articles
Xiuli SU(), Wenjun LIAO, Yan LI
Received:
2020-08-19
Revised:
2020-09-16
Online:
2021-01-05
Published:
2021-01-08
Contact:
Xiuli SU
E-mail:suxl@shanghai-electric.com
CLC Number:
Xiuli SU, Wenjun LIAO, Yan LI. Opportunities and challenges of hydrogen production with decoupled water electrolysis[J]. Energy Storage Science and Technology, 2021, 10(1): 87-95.
1 | JIAO Yan, ZHENG Yao, JARONIEC M, et al. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44: 2060-2086. |
2 | YOU Bo, SUN Yujie. Chalcogenide and phosphide solid-state catalysts for H2 generation[J]. ChemPlusChem, 2016, 81: 1045-1055. |
3 | ZHU Yunpei, GUO Chunxian, ZHENG Yao, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research, 2017, 50: 915-923. |
4 | BREEZE P. Hydrogen energy storage[M]. New York: Academic Press, 2018: 69-77. |
5 | YANG Lu, XIE Pengli, ZHANG Ronghui, et al. HIES: Cases for hydrogen energy and I-Energy[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29785-29804. |
6 | KOPP M, COLEMAN D, STILLER C, et al. Energiepark mainz: Technical and economic analysis of the worldwide largest power-to-gas plant with PEM electrolysis[J]. International Journal of Hydrogen Energy, 2017, 4: 13311-13320. |
7 | 郭秀盈, 李先明, 许壮, 等, 可再生能源电解制氢成本分析[J]. 储能科学与技术, 2020, 9(3): 689-695. |
GUO Xiuying, LI Xianming, XU Zhuang, et al. Cost analysis of hydrogen production by electrolysis of renewable energy[J]. Energy Storage Science and Technology, 2020, 9(3): 689-695. | |
8 | JIA J Y, SEITZ L C, BENCK J D, et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms13237. |
9 | PAIDAR M, FATEEY V, BOUZEK K. Membrane electrolysis' history, current status and perspective[J]. Electrochimica Acta, 2016, 209: 737-756. |
10 | GRIGORIEV S A, FATEEV V N, BESSARABOVET D G, et al. Current status, research trends, and challenges in water electrolysis science and technology[J]. International Journal of Hydrogen Energy, 2020, 3: doi:10.1016/j.ijhydene.2020.03.109. |
11 | SUN Shucheng, SHAO Zhigang, YU Hongmei, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520. |
12 | KAY B, CRISTINA D L R, MAXIMILIAN M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied Energy, 2019, 237: 862-872. |
13 | LEI Jie, YANG Junjie, LIU Ting, et al. Tuning redox active polyoxometalates for efficient electron-coupled proton-buffer-mediated water splitting[J]. Chemistry—A Uropean Journal, 2019, 25(49) 11432-11436. |
14 | GREIG C, LEROY C, MARK D S, et al. Decoupled electrolysis using a silicotungstic acid electron-coupled-proton buffer in a proton exchange membrane cell[J]. Electrochimica Acta, 2020, 331: doi:10.1016/j.electacta.2019135255. |
15 | BLOOR L G, SOLARSKA R, BIENKOWSKI K, et al. Solar-driven water oxidation and decoupled hydrogen production mediated by an electron-coupled-proton buffer[J]. Journal of the American Chemical Society, 2016, 138(21): 6707-6710. |
16 | LI Fei, YU Fengshou, DU Jian, et al. Water splitting via decoupled photocatalytic water oxidation and electrochemical proton reduction mediated by electron-coupled-proton buffer[J]. Chemistry—An Asian Journal, 2017, 12(20): 2666-2669. |
17 | SYMES M D, CRONIN L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013, 5: 403-409. |
18 | MACDONALD L, MCGLYNN J C, IRVINE N, et al. Using earth abundant materials for the catalytic evolution of hydrogen from electron-coupled proton buffers[J]. Sustainable Energy & Fuels, 2017, 1: 1782-1787. |
19 | WU Weiming, WU Xiaoyuan, WANG Sasa, et al. Highly efficient hydrogen evolution from water electrolysis using nanocrystalline transition metal phosphide catalysts[J]. RSC Advances, 2018, 8: doi:10.1039/C8RA07195K. |
20 | XIE Jingyi, LIU Zizhang, LI Jia, et al. Fe-doped CoP core shell structure with open cages as efficient electrocatalyst for oxygen evolution[J]. Journal of Energy Chemistry, 2020, 48: 328-333. |
21 | SHI Yanmei, ZHANG Bin. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6) 1529-1541. |
22 | JANOSCHKAL T, MARTIN N, MARTIN U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527: 78-81. |
23 | LIN Kaixiang, CHEM Q, GERHARDT M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349: 1529-1532. |
24 | 苏秀丽, 董晓丽, 刘瑶, 等, 基于钛酸锂负极和聚三苯胺正极的电池电容体系[J]. 电化学, 2018, 24(4): 324-331. |
SU Xiuli, DONG Xiaoli, LIU Yao, et al. Hybrid battery-capacitor system based on Li4Ti5O12 anode and PTPAn cathode[J]. Journal of Electrochemistry, 2018, 24(4): 324-331. | |
25 | RAUSCH B, SYMES M D, CRONIN L. A bio-inspired, small molecule electron-coupled-proton buffer for decoupling the half-reactions of electrolytic water splitting[J]. Journal of the American Chemical Society, 2013, 135(37): 13656-13659. |
26 | KIRKALDY N, CHISHOLM G, CHEN J J, et al. A practical, organic-mediated, hybrid electrolyser that decouples hydrogen production at high current densities[J]. Chemical Science, 2018, 9: 1621-1626. |
27 | AMSTUTZ V, TOGHILL K E, POWLESLAND F, et al. Renewable hydrogen generation from a dual-circuit redox flow battery[J]. Energy & Environmental Science, 2014, 7: 2350-2358. |
28 | LI Wei, JIANG Nan, HU Bo, et al. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron[J]. Chem, 2018, 4: 637-649. |
29 | YOU Bo, LIU Xuan, HU Guoxiang, et al. Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water[J]. Journal of the American Chemical Society, 2017, 139: 12283-12290. |
30 | 马元元, 郭昭薇, 王永刚, 等, 电池电极反应的新应用: 分步法电解制氢气[J]. 电化学, 2018, 24(5): 444-454. |
MA Yuanyuan, GUO Zhaowei, WANG Yonggang, et al. The new application of battery-electrode reaction: Decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry, 2018, 24(5): 444-454. | |
31 | MA Yuanyuan, DONG X, WANG Y, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908. |
32 | MA Yuanyuan, GUO Zhaowei, DONG Xiaoli, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019, 58: 4622-4626. |
33 | CHEN Long, DONG Xiaoli, WANG Yonggang, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communication, 2016, 7: doi:10.1038/ncomms11741. |
34 | MA Yuanyuan, DONG Xiaoli, WANG Yonggang, et al. Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production[J]. Energy Storage Materials, 2018, 11: 260-266. |
35 | CHOI B, PANTHI D, NAKOJI M, et al. A novel water-splitting electrochemical cycle for hydrogen production using an intermediate electrode[J]. Chemical Engineering Science, 2017, 157: 200-208. |
36 | AYERS K E, ANDERSON E B, CAPUANO C, et al. Research advances towards low cost, high efficiency PEM electrolysis[J]. ECS Transactions, 2010, 33: 3-15. |
37 | LANDMAN A, DOTAN H, SHTER G E, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nature Material, 2017, 16: 646-651. |
38 | HUNTER B M, GRAY H B, MULLER A M, et al. Earth-abundant heterogeneous water oxidation catalysts[J]. Chemical Review, 2016, 116: 14120-14136. |
39 | AVIGAIL L, RAWAN H, PAULA D, et al. Decoupled photoelectrochemical water splitting system for centralized hydrogen production[J]. Joule, 2020, 4: 448-471. |
40 | HOU Mengyan, CHEN Long, GUO Zhaowei, et al. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production[J]. Nature Communications, 2018, 9: doi:10.1038/s41467-018-02877-x. |
[1] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[2] | XU Lei, LIU Xiaopeng, WANG Yongyu. Early warning analysis for the thermal runaway process of full-size prefabricated cabin storage tank [J]. Energy Storage Science and Technology, 2022, (): 1-8. |
[3] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[4] | Fang WANG, Zheng WANG, Chunjing LIN, Guozhen ZHANG, Guiping ZHANG, Tianyi MA, Lei LIU, Shiqiang LIU. Analysis on potential causes of safety failure of new energy vehicles [J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. |
[5] | Yezhou HU, Shuang WANG, Tao SHEN, Ye ZHU, Deli WANG. Recent progress in confined noble-metal electrocatalysts for oxygen reduction reaction [J]. Energy Storage Science and Technology, 2022, 11(4): 1264-1277. |
[6] | Kang PENG, Junmin LIU, Gonggen TANG, Zhengjin YANG, Tongwen XU. Status and prospects of organic eletroactive species for aqueous organic redox flow batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1246-1263. |
[7] | Yun LI, Wang YANG, Yongfeng LI. Synthesis of petroleum asphalt-based MoS2/porous carbon material and its Li-storage performance [J]. Energy Storage Science and Technology, 2022, 11(3): 1026-1034. |
[8] | Zhiwei ZHAO, Zhi YANG, Zhangquan PENG. Application of time-of-flight secondary ion mass spectrometry in lithium-based rechargeable batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 781-794. |
[9] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[10] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[11] | Xin WANG, Pei HU, Yuanming ZHOU, Jinxia XU, Yan JIANG. Fast synthesis of Nb2O5 nanosheets derived from Nb2C MXene for lithium ion capacitors [J]. Energy Storage Science and Technology, 2022, 11(1): 38-44. |
[12] | Huan ZHU, Guojing LIU, Xing ZHANG, Fen YUE, Zhenhua YU. Policy and economic comparison of natural gas power generation and battery energy storage in peak regulation [J]. Energy Storage Science and Technology, 2021, 10(6): 2392-2402. |
[13] | Chunshui SUN, Decai GUO, Jian CHEN. Preparation and research of carbonized agaric material for sulfur cathodes [J]. Energy Storage Science and Technology, 2021, 10(6): 2060-2068. |
[14] | Zirui HE, Wei QI, Jintao SONG, Shuangshuang CUI, Hong LI. The thermodynamic analysis of a liquefied air energy storage system coupled with liquefied natural gas [J]. Energy Storage Science and Technology, 2021, 10(5): 1589-1596. |
[15] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||