Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1261-1272.doi: 10.19799/j.cnki.2095-4239.2021.0082
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yangyang LIU(), Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG(), Zhongxiao SONG()
Received:
2021-03-05
Revised:
2021-03-16
Online:
2021-07-05
Published:
2021-06-25
Contact:
Shizhao XIONG,Zhongxiao SONG
E-mail:liuyy0510@hotmail.com;shizhao.xiong@hotmail.com;zhongxiaosong@mail.xjtu.edu.cn
CLC Number:
Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode[J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272.
1 | 程新兵, 张强. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.CHENG X B, ZHANG Q. Growth mechanisms and suppression strategies of lithium metal dendrites[J]. Progress in Chemistry, 2018, 30(1): 51-72. |
2 | SCHMUCH R, WAGNER R, HÖRPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. |
3 | LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186. |
4 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478.LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. |
5 | LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
6 | 李茜, 郁亚娟, 张之琦, 等. 全固态锂电池的固态电解质进展与专利分析[J]. 储能科学与技术, 2021, 10(1): 77-86.LI X, YU Y J, ZHANG Z Q, et al. Advance and patent analysis of solid electrolyte in solid-state lithium batteries[J] Energy Storage Science and Technology, 2021, 10(1): 77-86. |
7 | ZHANG S S. Problem, status, and possible solutions for lithium metal anode of rechargeable batteries[J]. ACS Applied Energy Materials, 2018, 1(3): 910-920. |
8 | WOOD K N, NOKED M, DASGUPTA N P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior[J]. ACS Energy Letters, 2017, 2(3): 664-672. |
9 | 关俊, 李念武, 于乐. 人工界面层在金属锂负极中的应用[J]. 物理化学学报, 2021, 37(2): 2009011.GUAN J, LI N W, YU L. Artificial interphase layers for lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 2009011. |
10 | 刘冬冬, 陈超, 熊训辉. 锂金属负极人造保护膜的研究进展[J]. 物理化学学报, 2021, 37(2): 202008078.LIU D D, CHEN C, XIONG X H. Research progress on artificial protective films for lithium metal anodes[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 202008078. |
11 | 刘凡凡, 张志文, 叶淑芬, 等. 锂金属负极的挑战与改善策略研究进展[J]. 物理化学学报, 2021, 37(1): 2006021.LIU F F, ZHANG Z W, YE S F, et al. Challenges and improvement strategies progress of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 2006021. |
12 | XIAO J, LI Q Y, BI Y J, et al. Understanding and applying coulombic efficiency in lithium metal batteries[J]. Nature Energy, 2020, 5(8): 561-568. |
13 | ZHANG C F, LIU Y Y, JIAO X Y, et al. In situ volume change studies of lithium metal electrode under different pressure[J]. Journal of The Electrochemical Society, 2019, 166(15): A3675-A3678. |
14 | XU X Y, LIU Y Y, HWANG J Y, et al. Role of Li-ion depletion on electrode surface: Underlying mechanism for electrodeposition behavior of lithium metal anode[J]. Advanced Energy Materials, 2020, 10(44): 2002390. |
15 | LIU Y Y, XU X Y, SADD M, et al. Insight into the critical role of exchange current density on electrodeposition behavior of lithium metal[J]. Advanced Science, 2021, 8(5): 2003301. |
16 | FAN X L, JI X, HAN F D, et al. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Science Advance, 2018, 4(12): eaau9245. |
17 | OZHABES Y, GUNCELER D, ARIAS T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. arXiv: 1504. 05799v1, 2015, [cond-mat. mtrl-sci]. |
18 | LING C, BANERJEE D, MATSUI M. Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology[J]. Electrochimica Acta, 2012, 76: 270-274. |
19 | SANO H, SAKAEBE H, SENOH H, et al. Effect of current density on morphology of lithium electrodeposited in ionic liquid-based electrolytes[J]. Journal of The Electrochemical Society, 2014, 161(9): A1236-A1240. |
20 | SEONG I W, HONG C H, KIM B K, et al. The effects of current density and amount of discharge on dendrite formation in the lithium powder anode electrode[J]. Journal of Power Sources, 2008, 178(2): 769-773. |
21 | ZHU P C, GASTOL D, MARSHALL J, et al. A review of current collectors for lithium-ion batteries[J]. Journal of Power Sources, 2021, 485: 229321. |
22 | 高蕾, 孟玉凤, 颜琪斌, 等. 铜箔对动力锂离子电池性能的影响[J]. 储能科学与技术, 2021, 9(S1): 1-6.GAO L, MENG Y F, YAN Q B, et al. The influence of copper foil appearance quality on Li-ion power battery performance[J]. Energy Storage Science and Technology, 2021, 9(S1): 1-6. |
23 | 邱晓光, 刘威, 刘九鼎, 等. 金属锂负极的成核机制与载体修饰[J]. 物理化学学报, 2021, 37(1): 79-89.QIU X G, LIU W, LIU J D, et al. Nucleation mechanism and substrate modification of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 79-89. |
24 | RUPP R, CAERTS B, VANTOMME A, et al. Lithium diffusion in copper[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5206-5210. |
25 | LIU Y Y, XIONG S Z, WANG J L, et al. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites[J]. Energy Storage Materials, 2019, 19: 24-30. |
26 | WANG S H, YUE J P, DONG W, et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes[J]. Nature Communications, 2019, 10(1): 4930. |
27 | YAN K, LU Z D, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1(3): 16010. |
28 | STAN M C, BECKING J, KOLESNIKOV A, et al. Sputter coating of lithium metal electrodes with lithiophilic metals for homogeneous and reversible lithium electrodeposition and electrodissolution[J]. Materials Today, 2020, 39: 137-145. |
29 | HOU Z, YU Y K, WANG W H, et al. Lithiophilic Ag nanoparticle layer on Cu current collector towards stable Li metal anode[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8148-8154. |
30 | ZHANG S S, FAN X L, WANG C S. A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery[J]. Electrochimica Acta, 2017, 258: 1201-1207. |
31 | GUO F H, WU C, CHEN H, et al. Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode[J]. Energy Storage Materials, 2020, 24: 635-643. |
32 | LIU S, ZHANG X Y, LI R S, et al. Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating[J]. Energy Storage Materials, 2018, 14: 143-148. |
33 | SONG R S, GE Y Q, WANG B, et al. A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2019, 7(30): 18126-18134. |
34 | ZHANG N, YU S-H, ABRUÑA H D. Regulating lithium nucleation and growth by zinc modified current collectors[J]. Nano Research, 2019, 13(1): 45-51. |
35 | 王志达, 冯元宬, 卢松涛, 等. 利用原位氟化保护层改善三维锡锂合金/碳纸负极贫电解液下性能[J]. 物理化学学报, 2021, 37(2): 7-13.WANG Z D, FENG Y K, LU S T, et al. Improvement in performance of three-dimensional SnLi/carbon paper anode in lean electrolyte with in situ fluorinated protection layer[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 7-13. |
36 | OYAKHIRE S T, HUANG W, WANG H S, et al. Revealing and elucidating ALD-derived control of lithium plating microstructure[J]. Advanced Energy Materials, 2020, 10(44): 2002736. |
37 | CHEN W Y, SALVATIERRA R V, REN M Q, et al. Laser-induced silicon oxide for anode-free lithium metal batteries[J]. Advanced Materials, 2020, 32(33): 2002850. |
38 | ZHANG Q, LUAN J Y, TANG Y G, et al. A facile annealing strategy for achieving in situ controllable Cu2O nanoparticle decorated copper foil as a current collector for stable lithium metal anodes[J]. Journal of Materials Chemistry A, 2018, 6(38): 18444-18448. |
39 | TU Z Y, ZACHMAN M J, CHOUDHURY S, et al. Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases[J]. Chemistry of Materials, 2018, 30(16): 5655-5662. |
40 | WONDIMKUN Z T, BEYENE T T, WERET M A, et al. Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries[J]. Journal of Power Sources, 2020, 450: 227589. |
41 | LI Q, PAN H Y, LI W J, et al. Homogeneous interface conductivity for lithium dendrite-free anode[J]. ACS Energy Letters, 2018, 3(9): 2259-2266. |
42 | LEE D, SUN S, KWON J, et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes[J]. Advanced Materials, 2020, 32(7): 1905573. |
43 | HE D Q, LIAO Y Q, CHENG Z X, et al. Facile one-step vulcanization of copper foil towards stable Li metal anode[J]. Science China Materials, 2020, 63(9): 1663-1671. |
44 | LIN K, LI T, CHIANG S W, et al. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes[J]. Small, 2020, 16(37): 2001784. |
45 | CHAZALVIEL J N. Electrochemical aspects of the generation of ramified metallic electrodeposits[J]. Physical Review A, 1990, 42(12): 7355-7367. |
46 | YANG C P, YIN Y X, ZHANG S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015, 6: 8058. |
47 | YE H, ZHENG Z J, YAO H R, et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries[J]. Angewandte Chemie International Edition, 2019, 58(4): 1094-1099. |
48 | TANG Y P, SHEN K, LÜ Z Y, et al. Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal[J]. Journal of Power Sources, 2018, 403: 82-89. |
49 | UMH H N, PARK J, YEO J, et al. Lithium metal anode on a copper dendritic superstructure[J]. Electrochemistry Communications, 2019, 99: 27-31. |
50 | CHI S S, LIU Y C, SONG W L, et al. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode[J]. Advanced Functional Materials, 2017, 27(24): 1700348. |
51 | ZHANG D, DAI A, WU M, et al. Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 5(1): 180-186. |
52 | YUN Q B, HE Y B, LÜ W, et al. Chemical dealloying derived 3D porous current collector for Li metal anodes[J]. Advanced Materials, 2016, 28(32): 6932-6939. |
53 | ZHAO H, LEI D N, HE Y B, et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector[J]. Advanced Energy Materials, 2018, 8(19): 1800266. |
54 | AN Y L, FEI H F, ZENG G F, et al. Vacuum distillation derived 3D porous current collector for stable lithium-metal batteries[J]. Nano Energy, 2018, 47: 503-511. |
55 | LI Q, ZHU S P, LU Y Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries[J]. Advanced Functional Materials, 2017, 27(18): 1606422. |
56 | KIM H, GONG Y J, YOO J, et al. Highly stable lithium metal battery with an applied three-dimensional mesh structure interlayer[J]. Journal of Materials Chemistry A, 2018, 6(32): 15540-15545. |
57 | SHI P, LI T, ZHANG R. Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries[J]. Advanced Materials, 2019, 31(8): 1807131. |
58 | CHANG J, SHANG J, SUN Y M, et al. Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium[J]. Nature Communications, 2018, 9(1): 4480. |
59 | CHEN X, LÜ Y Y, SHANG M W, et al. Ironing controllable lithium into lithiotropic carbon fiber fabric: A novel Li-metal anode with improved cyclability and dendrite suppression[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21584-21592. |
60 | MATSUDA S, KUBO Y, UOSAKI K, et al. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries[J]. ACS Energy Letters, 2017, 2(4): 924-929. |
61 | ZHENG J X, TANG T, ZHAO Q, et al. Physical orphaning versus chemical instability: Is dendritic electrodeposition of Li fatal?[J]. ACS Energy Letters, 2019, 4(6): 1349-1355. |
62 | ZUO T T, WU X W, YANG C P, et al. Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity li anodes[J]. Advanced Materials, 2017, 29(29): 1700389. |
63 | TAO L, HU A Y, YANG Z R, et al. A surface chemistry approach to tailoring the hydrophilicity and lithiophilicity of carbon films for hosting high-performance lithium metal anodes[J]. Advanced Functional Materials, 2020, 30(31): 2000585. |
64 | LIU L, YIN Y X, LI J Y, et al. Free-standing hollow carbon fibers as high-capacity containers for stable lithium metal anodes[J]. Joule, 2017, 1(3): 563-575. |
65 | HUANG G, HAN J H, ZHANG F, et al. Lithiophilic 3D nanoporous nitrogen-doped graphene for dendrite-free and ultrahigh-rate lithium-metal anodes[J]. Advanced Materials, 2019, 31(2): 1805334. |
66 | MATSUDA S, KUBO Y, UOSAKI K, et al. Lithium-metal deposition/dissolution within internal space of CNT 3D matrix results in prolonged cycle of lithium-metal negative electrode[J]. Carbon, 2017, 119: 119-123. |
67 | REN F H, LI Z D, HUAI L Y, et al. High-loading lateral Li deposition realized by a scalable fluorocarbon bonded laminates[J]. Carbon, 2021, 171: 894-906. |
68 | GUO F, WANG Y L, KANG T, et al. A Li-dual carbon composite as stable anode material for Li batteries[J]. Energy Storage Materials, 2018, 15: 116-123. |
69 | CHEN Y M, WANG Z Q, LI X Y, et al. Li metal deposition and stripping in a solid-state battery via Coble creep[J]. Nature, 2020, 578(7794): 251-255. |
70 | CHEN K-H, SANCHEZ A J, KAZYAK E, et al. Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes[J]. Advanced Energy Materials, 2019, 9(4): 1802534. |
71 | TANTRATIAN K, CAO D X, ABDELAZIZ A, et al. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays[J]. Advanced Energy Materials, 2019, 10(5): 1902819. |
72 | 王骞, 吴恺, 王航超, 等. 亲锂的三维二硫化锡@碳纤维布用于稳定的锂金属负极[J]. 物理化学学报, 2021, 37(1): 150-158.WANG Q, WU K, WANG H C, et al. Lithiophilic 3D SnS2@carbon fiber cloth for stable Li metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 150-158. |
73 | CHEN L, FAN X L, JI X, et al. High-energy Li metal battery with lithiated host[J]. Joule, 2019, 3(3): 732-744. |
74 | LIU B, ZHANG J G, XU W. Advancing lithium metal batteries[J]. Joule, 2018, 2(5): 833-845. |
75 | LIU Y Y, XU X Y, JIAO X X, et al. LixGe containing ion-conductive hybrid skin for high rate lithium metal anode[J]. Chemical Engineering Journal, 2019, 371: 294-300. |
76 | LIU Y Y, XIONG S Z, DENG J K, et al. Stable Li metal anode by crystallographically oriented plating through in-situ surface doping[J]. Science China Materials, 2020, 63(6): 1036-1045. |
77 | HE M F, GUO R, HOBOLD G M, et al. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(1): 73-79. |
78 | WANG R, YU J, TANG J T, et al. Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode[J]. Energy Storage Materials, 2020, 32: 178-184. |
79 | HU F, LI Z, WANG S F, et al. Mirror-like electrodeposition of lithium metal under a low-resistance artificial solid electrolyte interphase layer[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39674-39684. |
[1] | Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 974-986. |
[2] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. |
[3] | FAN Yaping, YAN Liqin, JIAN Dechao, LYU Taolin, YU Meng, WANG Zhenyu, ZHANG Quansheng, XIE Jingying. In situ detection of lithium dendrite in the failure of lithium-ion batteries [J]. Energy Storage Science and Technology, 2019, 8(6): 1040-1049. |
[4] | YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery [J]. Energy Storage Science and Technology, 2018, 7(4): 618-630. |
[5] | ZHAO Meng, XU Rui, HUANG Jiaqi, ZHANG Qiang. Flexible cathodes for lithium sulfur battery: A review [J]. Energy Storage Science and Technology, 2017, 6(3): 360-379. |
[6] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
[7] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[8] | ZHANG Weidong, FAN Lei, ZHU Shoupu, LU Yingying. Recent developments in high-energy lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. |
[9] | CHEN Yuqing1,2, YANG Xiaofei1,2, YU Ying1,2, LI Xianfeng1,3, ZHANG Hongzhang1,3, ZHANG Huamin1,3. Key materials and technology research progress of lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(2): 169-189. |
[10] | GUO Yuguo . Project “High-energy solid-state lithium metal batteries based on nanostructured materials” [J]. Energy Storage Science and Technology, 2016, 5(6): 919-921. |
[11] | XIA Yu, WANG Shuangshaung, WANG Yifei. Applications of carbon nanotubes in the lithium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(4): 422-429. |
[12] | ZHU Jianyu, FENG Jiemin, WANG Yuhui, GUO Zhansheng. Mechanical properties of copper current collection foils of Li-ion batteries [J]. Energy Storage Science and Technology, 2014, 3(4): 360-363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||