Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1273-1284.doi: 10.19799/j.cnki.2095-4239.2021.0026
• Energy Storage Materials and Devices • Previous Articles Next Articles
Yimo LUO1(), Jinjin RUI1, Wei XU1, Jinqing PENG1, Xiaohui SHE2,3(), Nianping LI1, Yulong DING3
Received:
2021-01-19
Revised:
2021-04-17
Online:
2021-07-05
Published:
2021-06-25
Contact:
Yimo LUO,Xiaohui SHE
E-mail:yimoluo@hnu.edu.cn;SheXH19@hotmail.com
CLC Number:
Yimo LUO, Jinjin RUI, Wei XU, Jinqing PENG, Xiaohui SHE, Nianping LI, Yulong DING. Research progress on physical property control and heat and mass transfer optimization of hydrated salt in thermochemical heat storage reactor[J]. Energy Storage Science and Technology, 2021, 10(4): 1273-1284.
1 | 李威, 陈威, 王丹丹. 基于水合盐热化学储能的技术研究与进展[J]. 制冷与空调, 2017, 17(8): 14-21. |
LI W, CHEN W, WANG D D. Research and development of thermochemical energy storage based on hydrated salt[J]. Refrigeration and Air Conditioning, 2017, 17(8): 14-21. | |
2 | YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39: 489-514. |
3 | TRAUSEL F, JONG A J D, CUYPERS R. A review on the properties of salt hydrates for thermochemical storage[J]. Energy Procedia, 2014, 48: 447-452. |
4 | BOER R D, HAIJE W, VELDHUIS J. Determination of structural, thermodynamic and phase properties in the Na2S-H2O system for application in a chemical heat pump[J]. Thermochimica Acta, 2003, 395: 3-19. |
5 | DONKERS P A J, SOGUTOGLU L C, HUININK H P, et al. A review of salt hydrates for seasonal heat storage in domestic applications[J]. Applied Energy, 2017, 199: 45-68. |
6 | RAMMELBERG H U, OSTERLAND T, PRIEHS B, et al. Thermochemical heat storage materials-Performance of mixed salt hydrates[J]. Solar Energy, 2016, 136: 571-589. |
7 | ZONDAG H A, KIKKERT B W J, SMEDING S F, et al. Thermochemical seasonal solar heat storage with MgCl2·6H2O: First upscaling of the reactor[C]//Proceedings of International Conference for Sustainable Energy Storage, 2011. |
8 | 王会春, 凌子夜, 方晓明, 等. 六水氯化镁相变储热材料的研究进展[J].储能科学与技术, 2017, 6(2): 204-212.WANG H C, LING Z Y, FANG X M, et al. Recent progress in the use of magnesium chloride hyxahydrate used as a phase change material[J]. Energy Storage Science and Technology, 2017, 6(2): 204-212. |
9 | N'TSOUKPOE K E, SCHMIDT T, RAMMELBERG H U, et al. A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage[J]. Applied Energy, 2014, 124: 1-16. |
10 | 展佳, 秦善, 高静. 无机水合盐中水的状态与相变潜热的关系[J]. 北京大学学报(自然科学报), 54(1): 80-86.ZHAN J, QIN S, GAO J. Storage of water in inorganic salt hydrates and the implications to latent heat in phase changes[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2018, 54(1): 80-86. |
11 | FOPAH-LELE A, TAMBA J G. A review on the use of SrBr2·6H2O as a potential material for low temperature energy storage systems and building applications[J]. Solar Energy Materials & Solar Cells, 2017, 164: 175-187. |
12 | AL-ABBASI O, ABDELKEDI A, GHOMMEM M. Modeling and assessment of a thermochemical energy storage using salt hydrates[J]. International Journal of Energy Research, 2017, 41: 2149-2161. |
13 | LINNOW K, NIERMANN M, BONATZ D, et al. Experimental studies of the mechanism and kinetics of hydration reactions[J]. Energy Procedia, 2014, 48:394-404. |
14 | MEHRABADI A, FARID M. New salt hydrate composite for low-grade thermal energy storage[J]. Energy, 2018, 164:194-203. |
15 | LIN J, ZHAO Q, HUANG H, et al. Applications of low-temperature thermochemical energy storage systems for salt hydrates based on material classification: A review[J]. Solar Energy, 2021, 214:149-178. |
16 | 郝茂森, 刘洪芝, 王婉桐, 等. 水合盐热化学储热材料的研究进展[J]. 储能科学与技术, 9(3): 791-796.HAO M S, LIU H Z, WANG W T, et al. Research progress of thermochemical heat storage materials of hydrated salts[J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
17 | POSERN K, KAPS C. Calorimetric studies of thermochemical heat storage materials based on mixtures of MgSO4 and MgCl2[J]. Thermochimica Acta, 2010, 502: 73-76. |
18 | ARISTOV Y I, RESTUCCIA G, TOKAREV M M, et al. Selective water sorbents for multiple applications, 10. Energy storage ability[J]. Reaction Kinetics and Catalysis Letters, 2000, 69: 345-353. |
19 | LEVITSKIJ E A, ARISTOV Y I, TOKAREV M M, et al. "Chemical heat accumulators": A new approach to accumulating low potential heat[J]. Solar Energy Materials and Solar Cells, 1996, 44: 219-235. |
20 | GARETH T W, DIDIER G, DUSAN S, et al. Zeolite-MgCl2 composites as potential long-term heat storage materials: Influence of zeolite properties on heats of water sorption[J]. Solar Energy Materials & Solar Cells, 2014, 128: 289-295. |
21 | YU N, WANG R Z, WANG L W, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84. |
22 | KORHAMMER K, DRUSKE M M, FOPAH-LELE A, et al. Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage[J]. Applied Energy, 2016, 162: 1462-1472. |
23 | EJEIAN M, ENTEZARI A, WANG R Z. Solar powered atmospheric water harvesting with enhanced LiCl/MgSO4/ACF composite[J]. Applied Thermal Engineering, 2020, 176: doi: 10.1016/j.applthermaleng.2020.115396. |
24 | 苗琪, 张叶龙, 谈玲华, 等. 矿物基化学吸附储热技术的研究进展[J]. 化工进展, 2020, 39(4): 1308-1320.MIAO Q, ZHANG Y L, TAN L H, et al. Research progress of mineral-based chemical adsorption heat storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1308-1320. |
25 | 翁立奎,张叶龙,姜琳, 等. 基于水合盐的热化学吸附储热技术研究进展[J]. 储能科学与技术, 2020, 9(6): 1729-1736.WENG L K, ZHANG Y L, JIANG L, et al. Research progress on thermochemical adsorption heat storage technology based on hydrate[J]. Energy Storage Science and Technology, 2020, 9(6): 1729-1736. |
26 | State of the art by the IEA Solar Heating and Cooling Task 32. Thermal energy storage for solar and low energy buildings[R]. IEA SHC, 2006. https://task32.iea-shc.org/publications. |
27 | YU N, WANG R Z, LU Z S, et al. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage[J]. Chemical Engineering Science, 2014, 111: 73-84. |
28 | COURBON E, D'ANS P, PERMYAKOVA A, et al. A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability[J]. Applied Energy, 2017, 190: 1184-1194. |
29 | COURBON E, D'ANS P, PERMYAKOVA A, et al. Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications[J]. Solar Energy, 2017, 157: 532-541. |
30 | GREKOVA A, GORDEEVA L, ARISTOV Y. Composite "LiCl/vermiculite" as advanced water sorbent for thermal energy storage[J]. Applied Thermal Engineering, 2017, 124: 1401-1408. |
31 | GREKOVA A, GORDEEVA L, ARISTOV Y. Composite sorbents "Li/Ca halogenides inside Multi-wall Carbon Nano-tubes" for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2016, 155: 176-183. |
32 | WU H, CHUA YS, KRUNGLEVICIUTE V, et al. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption[J]. Journal of the American Chemical Society, 2013, 135(28): 10525-10532. |
33 | SHEARER G C, CHAVAN S, ETHIRAJ J, et al. Tuned to perfection: Ironing out the defects in metal-organic framework UiO-66[J]. Chemistry of Materials, 2014, 26(14): 4068-4071. |
34 | ZHAO Y, WANG R, YANG Y, et al. Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat[J]. Energy, 2016, 115: 129-139. |
35 | PERMYAKOVA A, WANG S, COURBON E. Design of salt-metal organic framework composites for seasonal heat storage applications[J], Journal of Materials Chemistry A, 2017, 5: 12889-12898. |
36 | D'ANS P, COURBON E, PERMYAKOVA A, et al. A new strontium bromide MOF composite with improved performance for solar energy storage application[J]. Journal of Energy Storage, 2019, 10. doi: 10.1016/j.est.2019.100881. |
37 | SHI W N, ZHU Y Q, SHEN C, et al. Water sorption properties of functionalized MIL-101(Cr)-X (X=—NH2, —SO3H, H, —CH3, —F) based composites as thermochemical heat storage materials[J]. Microporous and Mesoporous Materials, 2019, 285: 129-136. |
38 | WADE CR, CORRALES-SANCHEZ T, NARAYAN T C, et al. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties[J], Energy and Environmental Science, 2013, 6: 2172-2177. |
39 | ZHUANG J, KU C H, CHOU L, et al. Optimized metal organic framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation[J]. ACS Nano, 2014, 8: 2812-2819. |
40 | FUJIE K, YAMADA T, IKEDA R, et al. Introduction of an ionic liquid into the micropores of a metal-organic framework and its anomalous phase behavior[J]. Angewandte Chemie International Edition, 2014, 53: 11302-11305. |
41 | LUAN Y, YANG M, MA Q Q, et al. Introduction of an organic acid phase changing material into metal-organic frameworks and the study of its thermal properties[J]. Journal of Materials Chemistry A, 2016, 4: 7641-7649. |
42 | FENG D L, FENG Y H, ZANG Y Y. Phase change in modified metal organic frameworks MIL-101(Cr): Mechanism on highly improved energy storage performance[J]. Microporous and Mesoporous Materials, 2019, 280: 124-132. |
43 | DIMBERU G A, SEONG J C, KI-HYUN K, et al. A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal-organic framework[J]. Chemical Engineering Journal, 2020, 389: doi: 10.1016/j.cej.2020.124430. |
44 | CHEN X, GAO H Y, TANG Z D, et al. Metal-organic framework-based phase change materials for thermal energy storage[J]. Cell Reports Physical Science, 2020, 1(10): 2666-3864. |
45 | PERMYAKOVA A. Metal Organic Frameworks based materials for long term solar energy storage application[D]. Paris: Université Paris-Saclay, Université de Mons, 2016. |
46 | N'TSOUKPOE K E, RESTUCCIA G, SCHIMIDT T, et al. The size of sorbents in low pressure sorption or thermochemical energy storage processes[J]. Energy, 2014, 77: 983-998. |
47 | SUN L M, MEUNIER F. Adsorption-aspects theoriques[J]. Techniques De Lingénieur, 2003: 1-16. |
48 | RUCKENSTEIN E, VAIDYANATHAN A S, YOUNGQUIST G R. Sorption by solids with bidisperse pore structures[J]. Chemical Engineering Science, 1971, 26: 1305-1318. |
49 | SILVA M T M S, RODRIGUES A E. Adsorption and diffusion in bidisperse pore structures[J]. Industrial & Engineering Chemistry Research, 1999, 38: 4023-4031. |
50 | SUN L M, MEUNIER F. Non-isothermal adsorption in a bidisperse adsorbent pellet[J]. Chemical Engineering Science, 1987, 42: 2899-2907. |
51 | THOMAS W, CRITTENDEN B. Adsorption technology and design[J]. Elsevier Science & Technology Books, 1998. |
52 | SUGIMOTO K, DINNEBIER R E, HANSON J C. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2·nH2O; n = 1, 2, 4)[J]. Acta Crystallographica Section B, 2007, 63: 235-242. |
53 | LI W, GUO H, ZENG M, et al. Performance of SrBr2·6H2O based seasonal thermochemical heat storage in a novel multilayered sieve reactor[J]. Energy Conversion and Management, 2019, 198: doi: 10.1016/j.enconman.2019.111843. |
54 | LELE A F, KUZNIK F, OPEL O, et al. Performance analysis of a thermochemical based heat storage as an addition to cogeneration systems[J]. Energy Conversion & Management, 2015, 106: 1327-1344. |
55 | MAURAN S, LAHMIDI H, GOETZ V. Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW·h by a solid/gas reaction[J]. Solar Energy, 2018, 82: 623-636. |
56 | MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47: 553-563. |
57 | MICHEL B, MAZET N, NEVEU P. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance[J]. Applied Energy, 2014, 129: 177-186. |
58 | MICHEL B, MAZET N, NEVEU P. Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution[J]. Applied Energy, 2016, 180: 234-244. |
59 | LIU H Z, NAGONO K, SUGIYAMA D, et al. Honeycomb filters made from mesoporous composite material for an open sorption thermal energy storage system to store low-temperature industrial waste heat[J]. International Journal of Heat and Mass Transfer, 2013, 65: 471-480. |
60 | CHEN W, LI W, ZHANG Y S. Analysis of thermal deposition of MgCl2·6H2O hydrated salt in the sieve-plate reactor for heat storage[J]. Applied Thermal Engineering, 2018, 135: 95-108. |
61 | LASS-SEYOUM A, BLICKER M, BOROZDENKO D, et al. Transfer of laboratory results on closed sorption thermochemical energy storage to a large-scale technical system[J]. Energy Procedia, 2012, 30: 310-320. |
62 | HAWWASH A A, HASSAN H, ELFEKY K. Impact of reactor design on the thermal energy storage of thermochemical Materials[J]. Applied Thermal Engineering, 2020, 168: doi: 10.1016/j.applthermaleng.2019.114776. |
[1] | Tianxin XU, Xikun TIAN, Jun YAN, Qiang YE, Changying ZHAO. Thermochemical energy storage reaction performance of CaCO3 with TiO2 doping [J]. Energy Storage Science and Technology, 2022, 11(1): 1-8. |
[2] | Xiangyu HAN, Liang WANG, Zhiwei GE, Haoshu LING, Xipeng LIN, Haisheng CHEN, Long PENG. The thermal storage and release kinetics of Co3O4/CoO redox reaction [J]. Energy Storage Science and Technology, 2021, 10(5): 1701-1708. |
[3] | Bowen YANG, Jun YAN, Changying ZHAO. Investigating the performance of a fluidized bed reactor for a magnesium hydroxide thermochemical energy storage system [J]. Energy Storage Science and Technology, 2021, 10(5): 1735-1744. |
[4] | HAO Maosen, LIU Hongzhi, WANG Wantong, LYU Jing. Research progress of thermochemical heat storage materials of hydrated salts [J]. Energy Storage Science and Technology, 2020, 9(3): 791-796. |
[5] | ZHENG Xingang, DING Yulong. Recent progress in the adsorption heat pump technology [J]. Energy Storage Science and Technology, 2014, 3(5): 495-508. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||