Energy Storage Science and Technology ›› 2018, Vol. 7 ›› Issue (4): 618-630.doi: 10.12028/j.issn.2095-4239.2018.0029
Previous Articles Next Articles
YUAN Yan1, ZHENG Dongdong1, FANG Zhao1, LIU Manbo1, LI Tao2
Received:
2018-02-11
Revised:
2018-03-18
Online:
2018-07-01
Published:
2018-07-01
CLC Number:
YUAN Yan, ZHENG Dongdong, FANG Zhao, LIU Manbo, LI Tao. Research progress on sulfur cathode of lithium sulfur battery[J]. Energy Storage Science and Technology, 2018, 7(4): 618-630.
[1] SEH Z W, SUN Y, ZHANG Q, et al. Designing high-energy lithium-sulfur batteries[J]. Chemical Society Reviews, 2016, 45(20):5605-5634. [2] 刁岩, 谢凯, 洪晓斌, 等. Li-S电池硫正极性能衰减机理分析及研究现状概述[J]. 化学学报, 2013, 71(4):508-518. DIAO Yan, XIE Kai, HONG Xiaobin, et al. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery[J]. Acta Chimica Sinica, 2013, 71(4):508-518. [3] ZHANG S S. Liquid electrolyte lithium/sulfur battery:Fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231:153-162. [4] OGOKE O, WU G, WANG X, et al. Effective strategies for stabilizing sulfur for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(2):448-469. [5] KANG W, DENG N, JU J, et al. A review of recent developments in rechargeable lithium-sulfur batteries[J]. Nanoscale, 2016, 8(37):16541-16588. [6] 刘帅, 姚路, 章琴, 等. 高性能锂硫电池研究进展[J]. 物理化学学报, 2017, 33(12):2339-2358. LIU Shuai, YAO Lu, ZHANG Qin, et al. Advances in high-performance lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12):2339-2358. [7] LIANG J, SUN Z H, LI F, et al. Carbon materials for Li-S batteries:Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2:76-106. [8] YANG Y, ZHENG G, CUI Y. Nanostructured sulfur cathodes[J]. Chemical Society Reviews, 2013, 42(7):3018-3032. [9] CAI J, WU C, ZHU Y, et al. Sulfur impregnated N, P co-doped hierarchical porous carbon as cathode for high performance Li-S batteries[J]. Journal of Power Sources, 2017, 341:165-174. [10] QIN F, WANG X, ZHANG K, et al. High areal capacity cathode and electrolyte reservoir render practical Li-S batteries[J]. Nano Energy, 2017, 38:137-146. [11] CHONG W G, HUANG J Q, XU Z L, et al. Lithium-sulfur battery cable made from ultralight, flexible graphene/carbon nanotube/sulfur composite fibers[J]. Advanced Functional Materials, 2017, 27(4):1604815. [12] BORCHARDT L, OSCHATZ M, KASKEL S. Carbon materials for lithium sulfur batteries-ten critical questions[J]. Chemistry-A European Journal, 2016, 22(22):7324-7351. [13] JI X, LEE K T NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6):500-506. [14] HE G, JI X, NAZAR L. High "C" rate Li-S cathodes:Sulfur imbibed bimodal porous carbons[J]. Energy & Environmental Science, 2011, 4(8):2878-2883. [15] HU L, LU Y, LI X, et al. Optimization of microporous carbon structures for lithium-sulfur battery applications in carbonate-based electrolyte[J]. Small, 2017, 13:1603533. [16] ZHAO C, LIU L, ZHAO H, et al. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries[J]. Nanoscale, 2014, 6(2):882-888. [17] ZHANG K, QIN F, LAI Y, et al. Efficient fabrication of hierarchically porous graphene-derived aerogel and its application in lithium sulfur battery[J]. ACS Applied Materials & Interfaces, 2016, 8(9):6072-6081. [18] XI K, CHEN B, LI H, et al. Soluble polysulphide sorption using carbon nanotube forest for enhancing cycle performance in a lithium-sulphur battery[J]. Nano Energy, 2015, 12:538-546. [19] GUEON D, HWANG J T, YANG S B, et al. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1):226-233. [20] SUN F, WANG J, CHEN H, et al. High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(12):5630-5638. [21] YU M, MA J, XIE M, et al. Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries[J]. Advanced Energy Materials, 2017, 7(11):1602347. [22] LEE J S, MANTHIRAM A. Hydroxylated N-doped carbon nanotube-sulfur composites as cathodes for high-performance lithium-sulfur batteries[J]. Journal of Power Sources, 2017, 343:54-59. [23] JI L, RAO M, ALONI S, et al. Porous carbon nanofiber-sulfur composite electrodes for lithium/sulfur cells[J]. Energy & Environmental Science, 2011, 4(12):5053-5059. [24] ZHENG G, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10):4462-4467. [25] ZHENG G, ZHANG Q, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3):1265-1270. [26] YUAN Y, LU H, FANG Z, et al. Preparation and performance of sulfur-carbon composite based on hollow carbon nanofiber for lithium-sulfur batteries[J]. Ionics, 2016, 22(9):1509-1515. [27] RACCICHINI R, VARZI A, PASSERINI S, et al. The role of graphene for electrochemical energy storage[J]. Nature Materials, 2015, 14:271-279 [28] JI L, RAO M, ZHENG H, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the America Chemical Society, 2011, 133(46):18522-18525. [29] GAO X, LI J, GUAN D, et al. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency[J]. ACS Applied Materials & Interfaces, 2014, 6(6):4154-4159. [30] DING B, YUAN C, SHEN L, et al. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(4):1096-1101. [31] WANG X, ZHANG Z, QU Y, et al. Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 256:361-368. [32] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications, 2014, 5:3410-3417. [33] CHENG H, WANG S. Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries[J]. Journal of Materials Chemistry A, 2014, 2(34):13783-13794. [34] 王维坤, 余仲宝, 苑克国, 等. 高比能锂硫电池关键材料的研究[J]. 化学进展, 2011, 23(2/3):540-547. WANG Weikun, YU Zhongbao, YUAN Keguo, et al. Key materials of high energy lithium sulfur batteries[J]. Progress in Chemistry, 2011, 23(2/3):540-547. [35] WANG J, YANG J, XIE J, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14):963-965. [36] WANG J, YANG J, WAN C, et al. Sulfur composite cathode materials for rechargeable lithium batteries[J]. Advanced Functional Materials, 2003, 13(6):487-492. [37] ZHOU W, YU Y, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the America Chemical Society, 2013, 135(44):16736-16743. [38] LI W, ZHANG Q, ZHENG G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance[J]. Nano Letters, 2013, 13(11):5534-5540. [39] LIM S, THANKAMONY R L, YIM T, et al. Surface modification of sulfur electrodes by chemically anchored cross-linked polymer coating for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(3):1401-1405. [40] SUN Z, XIAO M, WANG S, et al. Electrostatic shield effect:An effective way to suppress dissolution of polysulfide anions in lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2(38):15938-15944. [41] JI X, EVERS S, BLACK R, et al. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs[J]. Nature Communications, 2011, 2:325-341. [42] LI J, DING B, XU G, et al. Enhanced cycling performance and electrochemical reversibility of a novel sulfur-impregnated mesoporous hollow TiO2 sphere cathode for advanced Li-S batteries[J]. Nanoscale, 2013, 5:5743-5746. [43] ZHANG X, XIE H, KIM C S, et al. Advances in lithium-sulfur batteries[J]. Materials Science and Engineering, 2017, 121:1-29. [44] WEI S Z, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4:1331-1336. [45] DING B, SHEN L, XU G, et al. Encapsulating sulfur into mesoporous TiO2 host as a high performance cathode for lithium-sulfur battery[J]. Electrochimica Acta, 2013, 107:78-84. [46] KIM C S, GUERFI A, HOVINGTON P, et al. Facile dry synthesis of sulfur-LiFePO4 core-shell composite for the scalable fabrication of lithium/sulfur batteries[J]. Electrochemistry Communications, 2013, 32:35-38. [47] HAO Z, YUAN L, CHEN C, et al. TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(45):17711-17717. [48] ZHANG H, ZUO P, HUA J, et al. Improved rate performance of lithium sulfur batteries by in-situ anchoring of lithium iodide in carbon/sulfur cathode[J]. Electrochimica Acta, 2017, 238:257-262. [49] SU D, CORTIE M, FAN H, et al. Prussian blue nanocubes with an open framework structure coated with pedot as high-capacity cathodes for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29:1700587. [50] SUN Z, ZHANG J, YIN L, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8:14627-14634. [51] ZHENG C, NIU S, LV W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017, 33:306-312. [52] LEE K T, BLACK R, YIM T, et al. Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes[J]. Advanced Energy Materials, 2012, 2(12):1490-1496. [53] MIAO L X, WANG W K, WANG A B, et al. A high sulfur content composite with core-shell structure as cathode material for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(38):11659-11664. [54] HUANG X, SHI K, YANG J, et al. MnO2-GO double-shelled sulfur (S@MnO2@GO) as a cathode for Li-S batteries with improved rate capability and cyclic performance[J]. Journal of Power Sources, 2017, 356:72-79. [55] LIU J, WANG C, LIU B, et al. Rational synthesis of MnO2@CMK/S composite as cathode materials for lithium-sulfur batteries[J]. Materials Letters, 2017, 195:236-239. [56] YANG Y, YU G, CHA J J, et al. Improving the performance of lithium-sulfur batteries by conductive polymer coating[J]. ACS Nano, 2011, 5(11):9187-9193. [57] HE F, YE J, CAO Y, et al. Coaxial three-layered carbon/sulfur/polymer nanofibers with high sulfur content and high utilization for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(13):11626-11633. [58] ZHOU G, PEI S, LI L, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26:625-631. [59] FANG R, ZHAO S, PEI S, et al. Toward more reliable lithium-sulfur batteries:An all-graphene cathode structure[J]. ACS Nano, 2016, 10(9):8676-8682. [60] XI K, KIDAMBI P R, CHEN R, et al. Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries[J]. Nanoscale, 2014, 6(11):5746-5753. [61] LI T, HONG B, CAO H, et al. Carbon-coated aluminum foil as current collector for improving the performance of lithium sulfur batteries[J]. International Journal of Electrochemical Science, 2017,12(4):3099-3108. [62] MANTHIRAM A, FU Y, CHUNG S H, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23):11751-11787. [63] CHUNG S H, MANTHIRAM A. Low-cost, porous carbon current collector with high sulfur loading for lithium-sulfur batteries[J]. Electrochemistry Communications, 2014, 38:91-95. [64] WALUŚ S, BARCHASZ C, BOUCHET R, et al. Investigation of non-woven carbon paper as a current collector for sulfur positive electrode-understanding of the mechanism and potential applications for Li/S batteries[J]. Electrochimica Acta, 2016, 211:697-703. [65] ZHAO Q, HU X, ZHANG K, et al. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries[J]. Nano Letters, 2015, 15(1):721-726. [66] LIU L J, CHEN Y, ZHANG Z F, et al. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries[J]. Journal of Power Sources, 2016, 325:301-305. [67] OH S J, LEE J K, YOON W Y. Preventing the dissolution of lithium polysulfides in lithium-sulfur cells by using Nafion-coated cathodes[J]. Chemsuschem, 2015, 7(9):2562-2566 [68] ZHANG M, MENG Q, AHMAD A, et al. Poly(3,4-ethylenedioxythiophene)-coated sulfur for flexible and binder-free cathodes of lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2017, 5(33):17647-17652. [69] FANG J, QIN F, LI J, et al. Improved performance of sulfur cathode by an easy and scale-up coating strategy[J]. Journal of Power Sources, 2015, 297:265-270. [70] CHOI Y J, CHUNG Y D, BAEK C Y, et al. Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell[J]. Journal of Power Sources, 2008, 184(2):548-552. [71] TANG Q, SHAN Z, WANG L, et al. Nafion coated sulfur-carbon electrode for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 246:253-259. [72] ZHANG S S, TRAN D T, ZHANG Z. Poly(acrylic acid) gel as a polysulphide blocking layer for high-performance lithium/sulphur battery[J]. Journal of Materials Chemistry A, 2014, 2(43):18288-18292. [73] SONG J, NOH H, LEE J, et al. In situ coating of poly (3,4-ethylenedioxythiophene) on sulfur cathode for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 332:72-78. [74] JIN L, LI G, LIU B, et al. A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer[J]. Journal of Power Sources, 2017, 355:147-153. [75] JIN J, WEN Z, WANG Q, et al. Protected sulfur cathode with mixed conductive coating layer for lithium sulfur battery[J]. JOM, 2016, 68(10):2601-2606. [76] LI T, YUAN Y, HONG B, et al. Hybrid polyacrylamide/carbon coating on sulfur cathode for advanced lithium sulfur battery[J]. Electrochimica Acta, 2017, 244:192-198. [77] CHEN L, SHAW L L. Recent advances in lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 267:770-783. [78] XU G, YAN Q, KUSHIMA A, et al. Conductive graphene oxide-polyacrylic acid (GOPAA) binder for lithium-sulfur battery[J]. Nano Energy, 2017, 31:568-574. [79] LING M, ZHANG L, ZHENG T, et al. Nucleophilic substitution between polysulfides and binders unexpectedly stabilizing lithium sulfur battery[J]. Nano Energy, 2017, 38:82-90. [80] DUAN X, HAN Y, LI Y, et al. Improved capacity retention of low cost sulfur cathodes enabled by a novel starch binder derived from food[J]. RSC Advances, 2014, 4(105):60995-61000. [81] ZHONG Y J, LIU Z, ZHENG X, et al. Rate performance enhanced Li/S batteries with a Li ion conductive gel-binder[J]. Solid State Ionics, 2016, 289:23-27. [82] SUN J, HUANG Y, WANG W, et al. Application of gelatin as a binder for the sulfur cathode in lithium-sulfur batteries[J]. Electrochimica Acta, 2008, 53(24):7084-7088. [83] SUN J, HUANG Y, WANG W, et al. Preparation and electrochemical characterization of the porous sulfur cathode using a gelatin binder[J]. Electrochemistry Communications, 2008, 10(6):930-933. [84] LACEY M J, JESCHULL F, EDSTR M K, et al. Functional, water-soluble binders for improved capacity and stability of lithium-sulfur batteries[J]. Journal of Power Sources, 2014, 264:8-14. [85] LU Y Q, LI J T, PENG X X, et al. Achieving high capacity retention in lithium-sulfur batteries with an aqueous binder[J]. Electrochemistry Communications, 2016, 72:79-82. [86] PAN J, XU G, DING B, et al. PAA/PEDOT:PSS as a multifunctional, water-soluble binder to improve the capacity and stability of lithium-sulfur batteries[J]. RSC Advances, 2016, 6(47):40650-40655. [87] AI G, DAI Y, YE Y, et al. Investigation of surface effects through the application of the functional binders in lithium sulfur batteries[J]. Nano Energy, 2015, 16:28-37. [88] CHOI Y J, KIM K W, AHN H J, et al. Improvement of cycle property of sulfur electrode for lithium/sulfur battery[J]. Journal of Alloys and Compounds, 2008, 449(1/2):313-316. [89] SONG M S, HAN S C, KIM H S, et al. Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li-S secondary batteries[J]. Journal of the Electrochemical Society, 2004, 151(6):A791-A795. [90] XIE K, YOU Y, YUAN K, et al. Ferroelectric-enhanced polysulfide trapping for lithium-sulfur battery improvement[J]. Advanced Materials, 2017, doi:10.1002/adma.201604724. [91] PENG Z, LI R, GAO J, et al. Effective sulfur-salt composite cathode containing lithium bis(trifluoromethane) sulfonamide for lithium sulfur batteries[J]. Electrochimica Acta, 2016, 220:130-136. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHAO Yifei, YANG Zhendong, LI Feng, XIE Zhaojun, ZHOU Zhen. Nitrogen-doped carbon-coated Na3V2 (PO4 ) 2F3 cathode materials for sodium-ion batteries: Preparation and electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1883-1891. |
[6] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[7] | WU Yida, ZHANG Yi, ZHAN Yuanjie, GUO Yaqi, ZHANG liao, LIU Xingjiang, YU Hailong, ZHAO Wenwu, HUANG Xuejie. The effect of B2O3 modification on the electrochemical properties of LiCoO2 cathode [J]. Energy Storage Science and Technology, 2022, 11(6): 1687-1692. |
[8] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[9] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[10] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[11] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[12] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[13] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[14] | Xiaohan FENG, Jie SUN, Jianhao HE, Yihua WEI, Chenggang ZHOU, Ruimin SUN. Research progress in LiFePO4 cathode material modification [J]. Energy Storage Science and Technology, 2022, 11(2): 467-486. |
[15] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||