Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 974-986.doi: 10.19799/j.cnki.2095-4239.2020.0409
• Energy Storage Materials and Devices • Previous Articles Next Articles
Weihui LI(), Xingguo ZHONG, Huiqiao LI()
Received:
2020-12-19
Revised:
2021-01-22
Online:
2021-05-05
Published:
2021-04-30
Contact:
Huiqiao LI
E-mail:m201870835@hust.edu.cn;hqli@hust.edu.cn
CLC Number:
Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage[J]. Energy Storage Science and Technology, 2021, 10(3): 974-986.
1 | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4(9): 3243-3262. |
2 | LU L, HAN X, LI J, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
3 | BITTIHN R, HERR R, HOGE D. The SWING system, a nonaquo us rechargeable carbon/metal oxide cell[J]. Journal of Power Sources, 1993, 43(1/2/3): 223-231. |
4 | LIN D, LIU Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. |
5 | WU F, YUSHIN G. Conversion cathodes for rechargeable lithium and lithium-ion batteries[J]. Energy & Environmental Science, 20 17, 10(2): 435-459. |
6 | 李文俊, 徐航宇, 杨琪, 等. 高能量密度锂电池开发策略[J]. 储能科学与技术, 2020, 9(2): 448-478. |
LI W J, XU H Y, YANG Q, et al. Development of strategies for high-energy-density lithium batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 448-478. | |
7 | BALAISH M, PELED E, GOLODNITSKY D, et al. Liquid-free lithium-oxygen batteries[J]. Angewandte Chemie-International Edition, 2015, 54(2): 436-440. |
8 | YIN Y X, XIN S, GUO Y G, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie-International Edition, 2013, 52(50): 13186-13200. |
9 | HU Y, ZHANG T, CHENG F, et al. Recycling application of Li-MnO2 batteries as rechargeable lithium-air batteries[J]. Angewandte Chemie-International Edition, 2015, 54(14): 4338-4343. |
10 | WU N, YANG Z Z, YAO H R, et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnes ium battery by lithium-magnesium co-intercalation[J]. Angewandte Chemie-International Edition, 2015, 54(19): 5757-5761. |
11 | WU F, LV H, CHEN S, et al. Natural vermiculite enables high-performance in lithium-sulfur batteries via electrical double layer effects[J]. Advanced Functional Materials, 2019, 29(27): doi: 10.1002/adfm.20 1902820. |
12 | WU F, SROT V, CHEN S, et al. 3D honeycomb architecture enables a high-rate and long-life iron (III) fluoride-lithium battery[J]. Advanced Materials, 2019, 31(43): doi: 10.1002/adma.20 1905146. |
13 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
14 | WU F, MAIER J, YU Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries[J]. Chemical Society Reviews, 2020, 49(5): 1569-1614. |
15 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4302. |
16 | ZHANG Y, LV W, HUANG Z, et al. An air-stable and waterproof lithium metal anode enabled by wax composite packaging[J]. Science Bulletin, 2019, 64(13): 910-917. |
17 | KANG T, WANG Y, GUO F, et al. Self-assembled monolayer enables slurry-coating of Li anode[J]. ACS Central Science, 2019, 5(3): 468-476. |
18 | LI Y, LI Y, SUN Y, et al. Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas enviro nments[J]. Nano Letters, 2017, 17(8): 5171-5178. |
19 | KOZEN A C, LIN C F, PEARSE A J, et al. Next-generation lithium metal anode engineering via atomic layer deposition[J]. ACS Nano, 2015, 9(6): 5884-5892. |
20 | ALABOINA P K, RODRIGUES S, ROTTMAYER M, et al. In situ dendrite suppression study of nanolayer encapsulated Li metal enabled by zirconia atomic layer deposition[J]. ACS Applied Materials Interfaces, 2018, 10(38): 32801-32808. |
21 | ADAIR K R, ZHAO C, BANIS M N, et al. Highly stable lithium metal anode interface via molecular layer deposition zircone coatings for long life next-generation battery systems[J]. Angewandte Chemie-International Edition, 2019, 58(44): 15797-15802. |
22 | XU Q, LIN J, YE C, et al. Air-stable and dendrite-free lithium metal anodes enabled by a hybrid interphase of C60 and Mg[J]. Advanced Energy Materials, 2020, 10(6): doi: 10.1002/aenm.20 1903292. |
23 | LIU W, GUO R, ZHAN B, et al. Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells[J]. ACS Applied Energy Materials, 2018, 1(4): 1674-1679. |
24 | QU S, JIA W, WANG Y, et al. Air-stable lithium metal anode with sputtered aluminum coating layer for improved performance[J]. Electrochimica Acta, 2019, 317: 120-127. |
25 | CHOI S M, KANG I S, SUN Y K, et al. Cycling characteristics of lithium metal batteries assembled with a surface modified lithium electrode[J]. Journal of Power Sources, 2013, 244: 363-368. |
26 | XU J J, LIU Q C, YU Y, et al. In situ construction of stable tissue-directed/reinforced bifunctional separator/protection film on lithium anode for lithium-oxygen batteries[J]. Advanced Materials, 2017, 29(24): doi:10.1002/adma.201606552. |
27 | LIU K, PEI A, LEE H R, et al. Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer[J]. Journal of the American Chemical Society, 2017, 139(13): 4815-4820. |
28 | CAO Z, XU P, ZHAI H, et al. Ambient-air stable lithiated anode for rechargeable Li-ion batteries with high energy density[J]. Nano Letters, 2016, 16(11): 7235-7240. |
29 | YANG T, JIA P, LIU Q, et al. Air-stable lithium spheres produced by electrochemical plating[J]. Angewandte Chemie-International Edition, 2018, 57(39): 12750-12753. |
30 | ZHAO J, LU Z, LIU N, et al. Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents[J]. Nature Communications, 2014, 5(1): 5088. |
31 | ZHAO J, LU Z, WANG H, et al. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiat ion reagent for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(26): 8372-8375. |
32 | ZHAO J, LEE H W, SUN J, et al. Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7408-7413. |
33 | LIN D, LIU Y, CHEN W, et al. Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent Freon[J]. Nano Letters, 2017, 17(6): 3731-3737. |
34 | ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability[J]. Journal of the American Chemical Society, 2017, 139(33): 11550-11558. |
35 | LIANG J, LI X, ZHAO Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries[J]. Advanced Energy Materials, 2019, 9(38): doi: 10.1002/aenm.20 1902125. |
36 | LIAO K, WU S, MU X, et al. Developing a "water-defendable" and "dendrite-free" lithium-metal anode using a simple and promising GeCl4 pretreatment method[J]. Advanced Materials, 2018, 30(36): doi: 10.1002/adma.20 1705711. |
37 | XIE M, LIN X, HUANG Z, et al. A Li-Al-O solid-state electrolyte with high ionic conductivity and good capability to protect Li anode[J]. Advanced Functional Materials, 2020, 30(7): doi: 10.1002adfm.20 1905949. |
38 | LIU S, XIA X, DENG S, et al. In situ solid electrolyte interphase from spray quenching on molten Li: A new way to construct high-performance lithium-metal anodes[J]. Advanced Materials, 2019, 31(3): doi: 10.1002/adma.201806470. |
39 | LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphas e layer for long-life lithium metal anodes[J]. Angewandte Chemie-International Edition, 2018, 57(6): 1505-1509. |
40 | WANG G, CHEN C, CHEN Y, et al. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahi gh-rate and large-capacity lithium-metal anode[J]. Angewandte Chemie-International Edition, 2020, 59(5): 2055-2060. |
41 | ZHANG X, ZHANG Q, WANG X G, et al. An extremely simple method for protecting lithium anodes in Li-O2 batteries[J]. Angewandte Chemie-International Edition, 2018, 57(39): 12814-12818. |
42 | JIANG Z, JIN L, HAN Z, et al. Facile generation of polymer-alloy hybrid layers for dendrite-free lithium-metal anodes with impro ved moisture stability[J]. Angewandte Chemie-International Edition, 2019, 58(33): 11374-11378. |
43 | LIU X, LIU J, QIAN T, et al. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode[J]. Advanced Materials, 2020, 32(2): doi: 10.1002/adma.201902724. |
44 | SHEN X, LI Y, QIAN T, et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery[J]. Nature Communications, 2019, 10(1): doi: 10.1038/s41467-019-08767-0. |
45 | CHENG H, MAO Y, LU Y, et al. Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-perforance lithium-oxygen cells[J]. Nanoscale, 2020, 12(5): 3424-3434. |
46 | DONG L, NIE L, LIU W. Water-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene arch itecture[J]. Advanced Materials, 2020, 32(14):doi: 10.1002/adma.20 1908494. |
47 | ZHAO J, ZHOU G, YAN K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017, 12(10): 993-999. |
48 | WANG Y, SHEN Y, DU Z, et al. A lithium-carbon nanotube composite for stable lithium anodes[J]. Journal of Materials Chemistry A, 2017, 5(45): 23434-24439. |
49 | ZHENG L, GUO F, KANG T, et al. Highly stable lithium anode enabled by self-assembled monolayer of dihexadecanoalkyl phosphate[J]. Nano Research, 2020, 13(5): 1324-1331. |
50 | ARAVINDAN V, LEE Y S, MADHAVI S. Best practices for mitiatng irreversible capacity loss of negative electrodes in Li-ion batteries[J]. Advanced Energy Materials, 2017, 7(17): doi: 10.1002/aenm.201602607. |
51 | 聂平, 徐桂银, 蒋江民, 等. 预锂化技术及其在高比能硅负极中的应用[J]. 储能科学与技术, 2017, 6(5): 889-903. |
NIE P, XU G, JIANG J, et al. Prelithiation technol ogies and application in high energy silicon anodes[J]. Energy Storage Science and Technology, 2017, 6(5): 889-903. | |
52 | WANG G, LI F, LIU D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8699-8703. |
53 | SHEN X, LIU H, CHENG X B, et al. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes[J]. Energy Storage Materials, 2018, 12: 161-175. |
54 | WANG R, CUI W, CHU F, et al. Lithium metal anodes: Present and future[J]. Journal of Energy Chemistry, 2020, 48: 145-159. |
55 | LANG J, QI L, LUO Y, et al. High performance lithium metal anode: Progress and prospects[J]. Energy Storage Materials, 2017, 7: 115-129. |
56 | GHAZI Z A, SUN Z, SUN C, et al. Key aspects of lithium metal anodes for lithium metal batteries[J]. Small, 2019, 15(32): doi: 10.1002/smll.201900687. |
57 | 张魏栋, 范 磊, 朱守圃, 等. 高容量锂硫电池近期研究进展[J]. 储能科学与技术, 2017, 6(3): 534-549. |
ZHANG W D, FAN L, ZHU S P, et al. Recent developments in high-energy lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. | |
58 | 王维坤, 王安邦, 金朝庆. 锂硫电池的实用化挑战[J]. 储能科学与技术, 2020, 9(2): 593-597. |
WANG W K, WANG A B, JIN Z Q. Challenges on practicalization of lithium sulfur batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 593-597. | |
59 | XIA S, WU X, ZHANG Z, et al. Practical challenges and future perspectives of all-solid-state lithium-metal batteries[J]. Chem, 2019, 5(4): 753-785. |
60 | PERVEZ S A, CAMBAZ M A, THANGADURAI V, et al. Interface in solid-state lithium battery: Challenges, progress, and outlook[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22029-22050. |
61 | YANG L, SONG Y, LIU H, et al. Stable interface between lithium and electrolyte facilitated by a nanocomposite protective layer[J]. Small Methods, 2020, 4(3): doi: 10.1002/smtd.202070014. |
62 | RICHARDS W D, MIARA L J, WANG Y, et al. Interface stability in solid-state batteries[J]. Chemistry of Materials, 2016, 28(1): 266-273. |
63 | CHUNG H, KANG B. Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell[J]. Chemistry of Materials, 2017, 29(20): 8611-8619. |
64 | LEWIS J A, CORTES F J Q, BOEBINGER M G, et al. Interphase morphology between a solid-state electrolyte and lithium controls cell failure[J]. ACS Energy Letters, 2019, 4(2): 591-599. |
65 | HAN F, ZHU Y, HE X, et al. Electrochemical stability of Li10Ge P2S12 and Li7La3Zr2O12 solid electrolytes[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.20 1501590. |
66 | WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24-33. |
[1] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[2] | Yimin GUO, Dechao GUO, Qiwen ZHANG, Chao LONG, Fengrong HE. Influences of electrode structure on the electrical performances of lithium-ion capacitor [J]. Energy Storage Science and Technology, 2021, 10(6): 2106-2111. |
[3] | Yangyang LIU, Xuyang WANG, Xieyu XU, Yongjing WANG, Shizhao XIONG, Zhongxiao SONG. Research progresses on modified current collector for lithium metal anode [J]. Energy Storage Science and Technology, 2021, 10(4): 1261-1272. |
[4] | Chenlu YU, Xiaohua TIAN, Zhejuan ZHANG, Zhuo SUN. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628. |
[5] | Jianwen FENG, Shiguang HU, Bing HAN, Yinglin XIAO, Yonghong DENG, Chaoyang WANG. Research progress of electrolyte optimization for lithium metal batteries [J]. Energy Storage Science and Technology, 2020, 9(6): 1629-1640. |
[6] | CHENG Guangyu, LIU Xinwei, GU Honghui, GAO Lei, WANG Ke. Effect of pre-lithiation on storage life of lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 626-632. |
[7] | ZHONG Ming, YAN Wei, WANG Jiachao, WANG Jing, LI Linghong. Research progress on pre-lithiation in carbon-based lithium-ion capacitor [J]. Energy Storage Science and Technology, 2018, 7(4): 639-645. |
[8] | SHEN Xin, ZHANG Rui, CHENG Xinbing, GUAN Chao, HUANG Jiaqi, ZHANG Qiang. Recent progress on in-situ observation and growth mechanism of lithium metal dendrites [J]. Energy Storage Science and Technology, 2017, 6(3): 418-432. |
[9] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[10] | ZHANG Weidong, FAN Lei, ZHU Shoupu, LU Yingying. Recent developments in high-energy lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 534-549. |
[11] | CHEN Yuqing1,2, YANG Xiaofei1,2, YU Ying1,2, LI Xianfeng1,3, ZHANG Hongzhang1,3, ZHANG Huamin1,3. Key materials and technology research progress of lithium-sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(2): 169-189. |
[12] | MING Hai1,2, MING Jun3, QIU Jingyi1,2, ZHANG Wenfeng1,2, ZHANG Songtong1,2, CAO Gaoping1,2. Applications of pre-lithiation technologies in energy storage [J]. Energy Storage Science and Technology, 2017, 6(2): 223-236. |
[13] | ZHANG Jin, WANG Jing, SHI Zhiqiang. Research progress of carbon-based lithium ion capacitor [J]. Energy Storage Science and Technology, 2016, 5(6): 807-815. |
[14] | ZHANG Shijia, ZHANG Xiong, SUN Xianzhong, ZHAO Feifei, JIA Junxiang, MA Yanwei. Effect of the pre-lithiation capacity of mesocarbon microbeads anode on the performances of a flexible packaging lithium ion capacitors#br# [J]. Energy Storage Science and Technology, 2016, 5(6): 834-840. |
[15] | GUO Yuguo . Project “High-energy solid-state lithium metal batteries based on nanostructured materials” [J]. Energy Storage Science and Technology, 2016, 5(6): 919-921. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||