Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (3): 958-973.doi: 10.19799/j.cnki.2095-4239.2021.0163
Previous Articles Next Articles
Xiaoyu SHEN(), Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG()
Received:
2021-04-16
Revised:
2021-04-18
Online:
2021-05-05
Published:
2021-04-30
Contact:
Xuejie HUANG
E-mail:shenxiaoyu19@mails.ucas.ac.cn;xjhuang@iphy.ac.cn
CLC Number:
Xiaoyu SHEN, Ronghan QIAO, Guanjun CENG, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Feb. 1, 2021 to Mar. 31, 2021)[J]. Energy Storage Science and Technology, 2021, 10(3): 958-973.
1 | RYU H H, PARK N Y, NOH T C, et al. Microstrain alleviation in high-energy Ni-rich ma ncma cathode for long battery life[J]. ACS Energy Letters, 2021, 6(1): 216-223. |
2 | CHU B, YOU L, LI G, et al. Revealing the role of w-doping in enhancing the electrochemical performance of the LiNi0.6Co0.2Mn0.2O2 cathode at 4.5 V[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7308-7316. |
3 | JUNG C H, KIM D H, EUM D, et al. New insight into microstructure engineering of Ni-rich layered oxide cathode for high performance lithium ion batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010095. |
4 | AMZIL S, ZHANG Y, QIU T, et al. {010} oriented Li1.2Mn0.54Co0.13Ni0.13O2@C nanoplate with high initial columbic efficiency[J]. Journal of Power Sources, 2021, 486: doi: 10.1016/j.jpowsour.2020.229372. |
5 | YEH N H, WANG F M, KHOTIMAH C, et al. Controlling Ni2+ from the surface to the bulk by a new cathode electrolyte interphase formation on a Ni-rich layered cathode in high-safe and high-energy-density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7355-7369. |
6 | HUANG Y, ZHU Y, FU H, et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V[J]. Angewandte Chemie-International Edition, 2021, 60(9): 4682-4688. |
7 | BIANCHINI M, SCHIELE A, SCHWEIDLER S, et al. From LiNiO2 to Li2NiO3: Synthesis, structures and electrochemical mechanisms in Li-rich nickel oxides[J]. Chemistry of Materials, 2020, 32(21): 9211-9227. |
8 | ASL H Y, MANTHIRAM A. Proton-induced disproportionation of Jahn-Teller-active transition-metal ions in oxides due to electronically driven lattice instability[J]. Journal of the American Chemical Society, 2020, 142(50): 21122-21130. |
9 | AQIL A, JEROME C, BOSCHINI F, et al. Enhancing performances of polydopamine as cathode for lithium- and potassium-ion batteries by simple grafting of sulfonate groups[J]. Batteries & Supercaps, 2021, 4(2): 374-379. |
10 | AZIB T, THAURY C, CUEVAS F, et al. Impact of surface chemistry of silicon nanoparticles on the structural and electrochemical properties of Si/Ni3Sn4 composite anode for Li-ion batteries[J]. Nanomaterials, 2021, 11(1): doi: 10.3390/nano11010018. |
11 | KARUPPIAH S, KELLER C, KUMAR P, et al. A scalable silicon nanowires-grown-on-graphite composite for high-energy lithium batteries[J]. ACS Nano, 2020, 14(9): 12006-12015. |
12 | RAZA A, JUNG J Y, LEE C H, et al. Swelling-controlled double-layered SiOx/Mg2SiO4/SiOx composite with enhanced initial coulombic efficiency for lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7161-7170. |
13 | CHEN M, CAO W, WANG L, et al. Chessboard-like silicon/graphite anodes with high cycling stability toward practical lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(1): 775-783. |
14 | FENG C, LIU S, LI J, et al. Molecular understanding of electrochemical-mechanical responses in carbon-coated silicon nanotubes during lithiation[J]. Nanomaterials, 2021, 11(3): doi: 10.3390/nano11030564. |
15 | LI P, CHEN G, ZHANG N, et al. Beta-cyclodextrin as lithium-ion diffusion channel with enhanced kinetics for stable silicon anode[J]. Energy & Environmental Materials, 2021, 4(1): 72-80. |
16 | CHEN H, WU Z, SU Z, et al. A mechanically robust self-healing binder for silicon anode in lithium ion batteries[J]. Nano Energy, 2021, 81: doi: 10.1016/j.nanoen.2020.105654. |
17 | CUI Y, LIU S, WANG D, et al. A facile way to construct stable and ionic conductive lithium sulfide nanoparticles composed solid electrolyte interphase on Li metal anode[J]. Advanced Functional Materials, 2021, 31(3): doi: 10.1002/adfm.202006380. |
18 | ABOU-RJEILY J, BEZZA I, LAZIZ N A, et al. P2-Na0.67Mn0.85Al0.15O2 and NaMn2O4 blend as cathode materials for sodium-ion batteries using a natural beta-MnO2 precursor[J]. ACS Omega, 2021, 6(2): 1064-1072. |
19 | JIN C, LIU T, SHENG O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00789-7. |
20 | ZHAI P, WANG T, JIANG H, et al. 3d artificial solid-electrolyte interphase for lithium metal anodes enabled by insulator-metal-insulator layered heterostructures[J]. Advanced Materials, 2021, doi: 10.1002/adma.202006247. |
21 | LIN T C, DAWSON A, KING S C, et al. Understanding stabilization in nanoporous intermetallic alloy anodes for Li-ion batteries using operando transmission x-ray microscopy[J]. ACS Nano, 2020, 14(11): 14820-14830. |
22 | CHEN H, KE G, WU X, et al. Carbon nanotubes coupled with layered graphite to support snte nanodots as high-rate and ultra-stable lithium-ion battery anodes[J]. Nanoscale, 2021, 13(6): 3782-3789. |
23 | LIU H, ZHU Z, YAN Q, et al. A disordered rock salt anode for fast-charging lithium-ion batteries[J]. Nature, 2020, 585(7823): 63-67. |
24 | KIM Y, JACQUET Q, GRIFFITH K J, et al. High rate lithium ion battery with niobium tungsten oxide anode[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd919. |
25 | LEE M J, LEE K, LIM J, et al. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009397. |
26 | ZHOU L, ASSOUD A, ZHANG Q, et al. New family of argyrodite thioantimonate lithium superionic conductors[J]. Journal of the American Chemical Society, 2019, 141(48): 19002-19013. |
27 | LEE Y, JEONG J, LIM H D, et al. Superionic si-substituted lithium argyrodite sulfide electrolyte Li6+xSb1-xSixS5I for all-solid-state batteries[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 120-128. |
28 | TUFAIL M K, ZHOU L, AHMAD N, et al. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries[J]. Chemical Engineering Journal, 2021, 407: doi: 10.1016/j.cej.2020.127149. |
29 | ADELI P, BAZAK J D, HUQ A, et al. Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes[J]. Chemistry of Materials, 2021, 33(1): 146-157. |
30 | LI Y, DAIKUHARA S, HORI S, et al. Oxygen substitution for LiSiPSCl solid electrolytes toward purified Li10GeP2S12-type phase with enhanced electrochemical stabilities for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(20): 8860-8867. |
31 | CULVER S P, SQUIRES A G, MINAFRA N, et al. Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1-xSnxP2S12[J]. Journal of the American Chemical Society, 2020, 142(50): 21210-21219. |
32 | MINAFRA N, HOGREFE K, BARBON F, et al. Two-dimensional substitution: Toward a better understanding of the structure-transport correlations in the Li-superionic thio-lisicons[J]. Chemistry of Materials, 2021, 33(2): 727-740. |
33 | GAUTAM A, SADOWSKI M, GHIDIU M, et al. Engineering the site-disorder and lithium distribution in the lithium superionic argyrodite Li6PS5Br[J]. Advanced Energy Materials, 2021, 11(5): doi: 10.1002/aenm.202003369. |
34 | GAO Y, SUN S, ZHANG X, et al. Amorphous dual-layer coating: Enabling high Li-ion conductivity of non-sintered garnet-type solid electrolyte[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202009692. |
35 | KAUP K, ASSOUD A, LIU J, et al. Fast Li-ion conductivity in superadamantanoid lithium thioborate halides[J]. Angewandte Chemie-International Edition, 2021, 60(13): 6975-6980. |
36 | HU S, DU L, ZHANG G, et al. Open-structured nanotubes with three-dimensional ion-accessible pathways for enhanced Li+ conductivity in composite solid electrolytes[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13183-13190. |
37 | HYUN W J, THOMAS C M, LUU N S, et al. Layered heterostructure ionogel electrolytes for high-performance solid-state lithium-ion batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma. 202007864. |
38 | HE Y, LI H, HUO S, et al. Enabling interfacial stability via 3d networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries[J]. Journal of Power Sources, 2021, 490: doi: 10.1016/j.jpowsour.2021.229545. |
39 | ZHAO J, LIANG Y, ZHANG X, et al. In situ construction of uniform and robust cathode-electrolyte interphase for Li-rich layered oxides[J]. Advanced Functional Materials, 2021, 31(8): doi: 10. 1002/adfm.202009192. |
40 | KLEIN S, WICKEREN S V, ROESER S, et al. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003738. |
41 | LI S, LI C, YANG T, et al. 3,3-diethylene di-sulfite (des) as a high-voltage electrolyte additive for 4.5 V LiNi0.8Co0.1Mn0.1O2 /graphite batteries with enhanced performances[J]. ChemElectroChem, 2021, 8(4): 745-754. |
42 | JIANG S, WU H, YIN J, et al. Benzoic anhydride as a bifunctional electrolyte additive for hydrogen fluoride capture and robust film construction over high-voltage Li-ion batteries[J]. ChemSusChem, 2021, doi: 10.1002/cssc.202100061. |
43 | LEE H J, BROWN Z, ZHAO Y, et al. Ordered LiNi0.5Mn1.5O4 cathode in bis(fluorosulfonyl)imide-based ionic liquid electrolyte: Importance of the cathode-electrolyte interphase[J]. Chemistry of Materials, 2021, 33(4): 1238-1248. |
44 | DUONG M V, TRAN M V, GARG A, et al. Machine learning approach in exploring the electrolyte additives effect on cycling performance of LiNi0.5Mn1.5O4 cathode and graphite anode-based lithium-ion cell[J]. International Journal of Energy Research, 2021, 45(3): 4133-4144. |
45 | HOLOUBEK J, LIU H, WU Z, et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00783-z. |
46 | YU Z, WANG H, KONG X, et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries[J]. Nature Energy, 2020, 5(7): 526-533. |
47 | KLEIN S, HARTE P, HENSCHEL J, et al. On the beneficial impact of Li2CO3 as electrolyte additive in NCM523∥graphite lithium ion cells under high-voltage conditions[J]. Advanced Energy Materials, 2021, 11(10): doi: 10.1002/aenm.202003756. |
48 | INTAN N N, PFAENDTNER J. Effect of fluoroethylene carbonate additives on the initial formation of the solid electrolyte interphase on an oxygen-functionalized graphitic anode in lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(7): 8169-8180. |
49 | YANG J, LIU Q, PUPEK K Z, et al. Molecular engineering to enable high-voltage lithium-ion battery: From propylene carbonate to trifluoropropylene carbonate[J]. ACS Energy Letters, 2021, 6(2): 371-378. |
50 | GAO J, HAN S, HUA H, et al. Phenyl trifluoromethane sulfonate as a novel electrolyte additive for enhancing performance of LiNi0.6Mn0.2Co0.2O2/graphite cells working in wide temperature ranges[J]. Journal of Power Sources, 2021, 487: doi: 10.1016/j.jpowsour.2020.229416. |
51 | PARK S, JEONG S Y, LEE T K, et al. Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries[J]. Nature Communications, 2021, 12(1): 838-838. |
52 | CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. |
53 | ZHANG N, SUN C, HUANG Y, et al. Tuning electrolyte enables microsized sn as an advanced anode for Li-ion batteries[J]. Journal of Materials Chemistry A, 2021, 9(3): 1812-1821. |
54 | WANG C W, REN F C, ZHOU Y, et al. Engineering the interface between LiCoO2 and Li10GeP2S12-solid electrolytes with an ultrathin Li2CoTi3O8 interlayer to boost the performance of all-solid-state batteries[J]. Energy & Environmental Science, 2021, 14(1): 437-450. |
55 | KAWASOKO H, SHIRASAWA T, NISHIO K, et al. Clean solid-electrolyte/electrode interfaces double the capacity of solid-state lithium batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5861-5865. |
56 | LANGDON J, MANTHIRAM A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202010267. |
57 | LIU X, ZHENG B, ZHAO J, et al. Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003583. |
58 | BALASUBRAMANIAM R, NAM C W, ARAVINDAN V, et al. Interfacial engineering in a cathode composite based on garnet-type solid-state Li-ion battery with high voltage cycling[J]. Chemelectrochem, 2021, 8(3): 570-576. |
59 | YAMAGISHI Y, MORITA H, NOMURA Y, et al. Visualizing lithium distribution and degradation of composite electrodes in sulfide-based all-solid-state batteries using operando time-of-flight secondary ion mass spectrometry[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 580-586. |
60 | KRAFT L, ZUEND T, SCHREINER D, et al. Comparative evaluation of lmr-ncm and nca cathode active materials in multilayer lithium-ion pouch cells: Part ii. Rate capability, long-term stability, and thermal behavior[J]. Journal of the Electrochemical Society, 2021, 168(2): doi: 10.1149/1945-7111/abe50c. |
61 | RANDAU S, WALTHER F, NEUMANN A, et al. On the additive microstructure in composite cathodes and alumina-coated carbon microwires for improved all-solid-state batteries[J]. Chemistry of Materials, 2021, 33(4): 1380-1393. |
62 | WANG C, SUN X, YANG L, et al. In situ ion-conducting protective layer strategy to stable lithium metal anode for all-solid-state sulfide-based lithium metal batteries[J]. Advanced Materials Interfaces, 2021, 8(1): doi: 10.1002/admi.202001698. |
63 | WU T, QI J, XU M, et al. Selective S/Li2S conversion via in-built crystal facet self-mediation: Toward high volumetric energy density lithium-sulfur batteries[J]. ACS Nano, 2020, 14(11): 15011-15022. |
64 | SHI Z, SUN Z, CAI J, et al. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries[J]. Advanced Functional Materials, 2021, 31(4): doi: 10.1002/adfm. 202006798. |
65 | FAN X, YUAN R, LEI J, et al. Turning soluble polysulfide intermediates back into solid state by a molecule binder in Li-S batteries[J]. ACS Nano, 2020, 14(11): 15884-15893. |
66 | MA J, QIAO Y, HUANG M, et al. Low tortuosity thick cathode design in high loading lithium sulfur batteries enabled by magnetic hollow carbon fibers[J]. Applied Surface Science, 2021, 542: doi: 10.1016/j.apsusc.2020.148664. |
67 | ALZAHRANI A S, OTAKI M, WANG D, et al. Confining sulfur in porous carbon by vapor deposition to achieve high-performance cathode for all-solid-state lithium-sulfur batteries[J]. ACS Energy Letters, 2021, 6(2): 413-418. |
68 | CHEN P, WU Z, GUO T, et al. Strong chemical interaction between lithium polysulfides and flame-retardant polyphosphazene for lithium-sulfur batteries with enhanced safety and electrochemical performance[J]. Advanced Materials, 2021, 33(9): doi: 10.1002/adma.202007549. |
69 | LIU Y T, WANG L, LIU S, et al. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery[J]. Science China-Materials, 2021, doi: 10.1007/s40843-020-1552-7. |
70 | BICHON M, SOTTA D, DE VITO E, et al. Performance and ageing behavior of water-processed LiNi0.5Mn0.3Co0.2O2/graphite lithium-ion cells[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour.2020.229097. |
71 | HEISKANEN S K, LASZCZYNSKI N, LUCHT B L. Perspective-surface reactions of electrolyte with LiNixNoyNnzN2 cathodes for lithium ion batteries[J]. Journal of the Electrochemical Society, 2020, 167(10): doi: 10.1149/1945-7111/ab981c. |
72 | LIU Z, MA S, MU X, et al. A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11985-11994. |
73 | XU C, KOU X, LIU D, et al. Vertically aligned architecture in the dense and thick TiO2-graphene nanosheet electrode towards high volumetric and areal capacities[J]. Electrochimica Acta, 2021, 370: doi: 10.1016/j.electacta.2021.137770. |
74 | FU A, WANG C, PENG J, et al. Lithiophilic and antioxidative copper current collectors for highly stable lithium metal batteries[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm. 202009805. |
75 | LI J, LIN C, WENG M, et al. Structural origin of the high-voltage instability of lithium cobalt oxide[J]. Nature Nanotechnology, 2021, doi: 10.1038/s41565-021-00855-x. |
76 | HUANG D, ENGTRAKUL C, NANAYAKKARA S, et al. Understanding degradation at the lithium-ion battery cathode/electrolyte interface: Connecting transition-metal dissolution mechanisms to electrolyte composition[J]. ACS Applied Materials & Interfaces, 2021, 13(10): 11930-11939. |
77 | PAPP J K, LI N, KAUFMAN L A, et al. A comparison of high voltage outgassing of LiCoO2, LiNiO2, and Li2MnO3 layered Li-ion cathode materials[J]. Electrochimica Acta, 2021, 368: doi: 10.1016/j.electacta.2020.137505. |
78 | KANG J, TAKAI S, YABUTSUKA T, et al. Relaxation analysis of LixNi0.8Co0.1Mn0.1O2 after lithium extraction to high-voltage region(x≤0.12)[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd834. |
79 | HU J, WANG Q, WU B, et al. Fundamental linkage between structure, electrochemical properties, and chemical compositions of LiNi1-x-yMnxCoyO2 cathode materials[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2622-2629. |
80 | NGUYEN T T, VILLANOVA J, SU Z, et al. 3d quantification of microstructural properties of LiNi0.5Mn0.3Co0.2O2 high-energy density electrodes by X-ray holographic nano-tomography[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003529. |
81 | SUN T, SUN G, YU F, et al. Soft X-ray ptychography chemical imaging of degradation in a composite surface-reconstructed Li-rich cathode[J]. ACS Nano, 2021, 15(1): 1475-1485. |
82 | MICHAEL H, IACOVIELLO F, HEENAN T M M, et al. A dilatometric study of graphite electrodes during cycling with X-ray computed tomography[J]. Journal of the Electrochemical Society, 2021, 168(1): doi: 10.1149/1945-7111/abd648. |
83 | CHOI P, PARIMALAM B S, SU L, et al. Operando particle-scale characterization of silicon anode degradation during cycling by ultrahigh-resolution X-ray microscopy and computed tomography[J]. ACS Applied Energy Materials, 2021, 4(2): 1657-1665. |
84 | DUTOIT C E, TANG M, GOURIER D, et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging[J]. Nature Communications, 2021, 12(1): doi: 10.1038/s41467-021-21598-2. |
85 | WANG X, PAWAR G, LI Y, et al. Glassy Li metal anode for high-performance rechargeable Li batteries[J]. Nature Materials, 2020, 19(12): 1339-1345. |
86 | OTOYAMA M, YAMAOKA T, ITO H, et al. Visualizing local electrical properties of composite electrodes in sulfide all-solid-state batteries by scanning probe microscopy[J]. Journal of Physical Chemistry C, 2021, 125(5): 2841-2849. |
87 | FATHIANNASAB H, ZHU L, CHEN Z. Chemo-mechanical modeling of stress evolution in all-solid-state lithium-ion batteries using synchrotron transmission X-ray microscopy tomography[J]. Journal of Power Sources, 2021, 483: doi: 10.1016/j.jpowsour. 2020.229028. |
88 | BRUGGE R H, CHATER R J, KILNER J A, et al. Experimental determination of Li diffusivity in LLZO using isotopic exchange and FIB-SIMS[J]. Journal of Physics Energy, 2021, 3(3): doi: 10.1088/2515-7655/abe2f7. |
89 | BENAYAD A, MORALES-UGARTE J E, SANTINI C C, et al. Operando XPS: A novel approach for probing the lithium/electrolyte interphase dynamic evolution[J]. The Journal of Physical Chemistry A, 2021, 125(4): 1069-1081. |
90 | PARK J, BAE K T, KIM D, et al. Unraveling the limitations of solid oxide electrolytes for all-solid-state electrodes through 3d digital twin structural analysis[J]. Nano Energy, 2021, 79: doi: 10.1016/j.nanoen.2020.105456. |
91 | PARK H, YU S, SIEGEL D J Predicting charge transfer stability between sulfide solid electrolytes and Li metal anodes[J]. ACS Energy Letters, 2021, 6(1): 150-157. |
92 | YANG M, LIU Y, NOLAN A M, et al. Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries[J]. Advanced Materials, 2021, doi: 10.1002/adma. 202008081. |
93 | CHEKUSHKIN P M, MERENKOV I S, SMIRNOV V S, et al. The physical origin of the activation barrier in Li-ion intercalation processes: The overestimated role of desolvation[J]. Electrochimica Acta, 2021, 372: doi: 10.1016/j.electacta.2021.137843. |
94 | BOYLE D T, HUANG W, WANG H, et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins[J]. Nature Energy, 2021, doi: 10.1038/s41560-021-00787-9. |
95 | NANDA S, MANTHIRAM A. Delineating the lithium-electrolyte interfacial chemistry and the dynamics of lithium deposition in lithium-sulfur batteries[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003293. |
96 | SEITZMAN N, BIRD O F, ANDRYKOWSKI R, et al. Operando X-ray tomography imaging of solid-state electrolyte response to Li evolution under realistic operating conditions[J]. ACS Applied Energy Materials, 2021, 4(2): 1346-1355. |
97 | GONG C, PU S D, GAO X, et al. Revealing the role of fluoride-rich battery electrode interphases by operando transmission electron microscopy[J]. Advanced Energy Materials, 2021, doi: 10.1002/aenm.202003118. |
98 | XU Y, WU H, JIA H, et al. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy[J]. ACS Nano, 2020, 14(7): 8766-8775. |
99 | RIEGGER L M, SCHLEM R, SANN J, et al. Lithium-metal anode instability of the superionic halide solid electrolytes and the implications for solid-state batteries[J]. Angewandte Chemie-International Edition, 2021, doi: 10.1002/anie.202015238. |
100 | LEWIS J A, CORTES F J Q, LIU Y, et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography[J]. Nature Materials, 2021, doi: 10.1038/s41563-020-00903-2. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[4] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[10] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[13] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[14] | Yun TANG, Fang YUE, Kaimo GUO, Lanchun LI, Wei CHEN. International development trend analysis of next-generation electrochemical energy storage technology [J]. Energy Storage Science and Technology, 2022, 11(1): 89-97. |
[15] | Penghui LI, Caiwen WU, Jianpeng REN, Wenjuan WU. Research progress of lignin as electrode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 66-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||