Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (6): 1614-1628.doi: 10.19799/j.cnki.2095-4239.2020.0163
• Energy Storage Materials and Devices • Previous Articles Next Articles
Chenlu YU(), Xiaohua TIAN, Zhejuan ZHANG(), Zhuo SUN
Received:
2020-04-30
Revised:
2020-05-25
Online:
2020-11-05
Published:
2020-10-28
Contact:
Zhejuan ZHANG
E-mail:614724850@qq.com;zjzhang@phy.ecnu.edu.cn
CLC Number:
Chenlu YU, Xiaohua TIAN, Zhejuan ZHANG, Zhuo SUN. Research progress of specific capacity improvements of silicon-based anodes in lithium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(6): 1614-1628.
Fig.7
Formation process of agglomerate structured semimicro-size silicon-carbon (mSi-C) composite. (a) precursor solution of silicon nanoparticles and polymer (PAA) for aerosol process, (b) super structured composite of silicon nanoparticle and PAA (mSi-PAA) constructed by aerosol process induced agglomeration, (c) agglomerate structured silicon carbon composite (mSi-C) after carbon coating/calcination"
1 | 周军华, 罗飞, 褚赓, 等 锂离子电池纳米硅碳负极材料研究进展[J]. 储能科学与技术, 2020, 9(2): 569-571. |
ZHOU Junhua, LUO Fei, CHU Geng, et al. Research progress of nano silicon-carbon anode materials for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(2): 569-571. | |
2 | 陆越. 锂离子电池硅基负极结构设计及其首次库仑效率研究[D]. 武汉: 华中科技大学, 2019: 52-53, 56 |
-58.LU Yue. Structural design and initial coulombic efficiency of silicon-based anode materials for lithium-ion batteries[D]. Wuhan: Huazhong University of Science & Technology, 2019: 52-53, 56-58. | |
3 | LIU Xiaohua, ZHONG Li, HUANG Shan, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2): 1522-1531. |
4 | TIAN Huajun, TAN Xiaojian, XIN Fengxia, et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy, 2015, 11: 490-499. |
5 | HE Wei, TIAN Huajun, XIN Fengxia, et al. Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(35): 17956-17962. |
6 | CAO Weiyi, HAN Kai, CHEN Mengxun, et al. Particle size optimization enabled high initial coulombic efficiency and cycling stability of micro-sized porous Si anode via AlSi alloy powder etching[J]. Electrochimica Acta, 2019, 320: 134613. |
7 | ZHAO Tianting, ZHU Delun, LI Wenrong, et al. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes[J]. Journal of Power Sources, 2019, 439: doi: 10.1016/j.jpowsour.2019.227027. |
8 | YI Ran, DAI Fang, GORDIN M L, et al. Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries[J]. Advanced Energy Materials, 2013, 3(3): 295-300. |
9 | YI Ran, DAI Fang, GORDIN M L, et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro-sized Si-C composite Li-ion anodes[J]. Advanced Energy Materials, 2013, 3(11): 1507-1515. |
10 | SONG Jiangxuan, CHEN Shuru, ZHOU Mingjiong, et al. Micro-sized silicon-carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(5): 1257-1262. |
11 | LI Jinyi, LI Ge, ZHANG Juan, et al. Rational design of robust Si/C microspheres for high-tap-density anode materials[J]. ACS Applied Materials and Interfaces, 2019, 11(4): 4057-4064. |
12 | YI Ran, ZAI J, DAI Fang, et al. Dual conductive network-enabled graphene/Si-C composite anode with high areal capacity for lithium-ion batteries[J]. Nano Energy, 2014, 6: 211-218. |
13 | LU Zhenda, LIU Nian, Hyun Wook LEE, et al. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance[J]. ACS Nano, 2015, 9(3): 2540-2547. |
14 | SOHN Hiesang, KIM Dong Hyeon, YI Ran, et al. Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries[J]. Journal of Power Sources, 2016, 334: 128-136. |
15 | LI Chao, JU Yuhang, QI Li, et al. A micro-sized Si-CNT anode for practical application: Via a one-step, low-cost and green method[J]. RSC Advances, 2017, 7(86): 54844-54851. |
16 | SUN Yanxian, GUAN Hongmin, JIANG Zhaohua, et al. Study on prelithiation technology of hard carbon electrode using stable metal lithium powder[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(2): 2018-2020. |
17 | JEONG Sookyung, LI Xiaolin, ZHENG Jianming, et al. Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries[J]. Journal of Power Sources, 2016, 329: 323-329. |
18 | FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163. |
19 | ZHAO Hui, WEI Yang, WANG Cheng, et al. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries[J]. ACS Applied Materials and Interfaces, 2018, 10(6): 5440-5446. |
20 | PAN Qingrui, ZUO Pengjian, MU Tiansheng, et al. Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder[J]. Journal of Power Sources, 2017, 347: 170-177. |
21 | HAN Yuyao, LIU Xinyi, LU Zhenda. Systematic investigation of prelithiated SiO2 particles for high-performance anodes in lithium-ion battery[J]. Applied Sciences (Switzerland), 2018, 8(8): 1245. 2-9. |
22 | ZHU Yuanchao, HU Wei, ZHOU Jianbin, et al. Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage[J]. ACS Applied Materials and Interfaces, 2019, 11(20): 18305-18312. |
23 | 栗欢欢, 刘成洋, 陈彪, 等. 一种扣式及软包全电池的制作方法: CN108493439A [P]. 2018-09-04. |
LI Huanhuan, LIU Chengyang, CHEN Biao, et al. Button battery and flexible package all-battery production method: CN108493439A [P]. 2018-09-04. | |
24 | MENG Qinghai, LI Ge, YUE Junpei, et al. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy[J]. ACS Applied Materials and Interfaces, 2019, 11(35): 32062-32068. |
25 | WU Hao, ZHENG Lihua, ZHAN Jing, et al. Recycling silicon-based industrial waste as sustainable sources of Si/SiO2 composites for high-performance Li-ion battery anodes[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227513. |
26 | RODRIGUES M T F, GILBERT J A, KALAGA K, et al. Insights on the cycling behavior of a highly-prelithiated silicon-graphite electrode in lithium-ion cells[J]. Journal of Physics: Energy, 2020, 2(2): doi: 10.1088/2515-7655/AB6B3A. |
27 | KIM Hye Jin, CHOI Sunghun, Seung Jong LEE, et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[J]. Nano Letters, 2016, 16(1): 282-288. |
28 | 杨梢, 马卫. 预锂化硅碳负极材料及其制备方法与锂离子电池: CN109817953A [P]. 2019-05-28. |
YANG Shao, MA Wei. Pre-lithiated silicon-carbon negative electrode material and preparation method thereof and lithium ion battery: CN109817953A [P]. 2019-05-28. | |
29 | 刘静, 高秀玲, 王驰伟. 一种采用三维箔材的锂离子电池负极单面预锂化方法: CN108550780A [P]. 2018-09-18. |
LIU Jing, GAO Xiuling, WANG Chiwei. Lithium ion battery negative electrode single-side pre-lithiation method using three-dimensional foil: CN108550780A [P]. 2018-09-18. | |
30 | 杨玉洁. 金属锂带及其制备方法及使用该金属锂带的储能器件: CN104900841B [P]. 2018-03-30. |
YANG Yujie. Lithium metal strip, preparation method thereof, and energy storage device using lithium metal strip: CN104900841B [P]. 2018-03-30. | |
31 | 李良彬, 熊训满, 李玉成, 等. 一种金属锂带生产装置及方法: CN104759478A [P]. 2015-07-08. |
LI Liangbin, XIONG Xunman, LI Yucheng, et al. Metal lithium belt manufacturing device and method: CN104759478A [P]. 2015-07-08. | |
32 | 张杰. 金属锂带自动卷绕装置: CN207086594U [P]. 2018-03-13. |
ZHANG Jie. Automatic take -up device in lithium metal area: CN207086594U [P]. 2018-03-13. | |
33 | 陈强, 牟瀚波, 程滋平, 等. 一种超薄金属锂带生产线: CN206911938U [P]. 2018-01-23. |
CHEN Qiang, MOU Hanbo, CHENG Ziping, et al. Super thin metal lithium area production line: CN206911938U [P]. 2018-01-23. | |
34 | 曹乃珍, 邹崴, 刘强, 等. 3D打印制备金属锂带的方法: CN108145165A [P]. 2018-06-12. |
CAO Naizhen, ZOU Wai, LIU Qiang, et al. Method for preparing metallic lithium strip through 3D printing: CN108145165A [P]. 2018-06-12. | |
35 | 杨杰, 谭谋, 李正, 等. 一种超薄金属锂带的制备方法: CN109346680A [P]. 2019-02-15. |
YANG Jie, TAN Mou, LI Zheng, et al. Preparation method of ultrathin metal lithium belt: CN109346680A [P]. 2019-02-15. | |
36 | 李世玲. 一种金属锂带的生产方法: CN1644258A [P]. 2005-07-27. |
LI Shiling. Production for metal lithium bands: CN1644258A [P]. 2005-07-27. | |
37 | 陈强, 牟瀚波. 复合型金属锂带: CN201017936Y [P]. 2008-02-06. |
CHEN Qiang, MOU Hanbo. Composite type metal lithium strip: CN201017936Y [P]. 2008-02-06. | |
38 | 杨玉洁. 一种金属锂带及其制备方法及使用该金属锂带的储能器件: CN104868127A [P]. 2015-08-26. |
YANG Yujie. Metal lithium strip, preparation method thereof and energy storage device using metal lithium strip: CN104868127A [P]. 2015-08-26. | |
39 | 聂阳, 邹崴, 曹乃珍. 一种低品位锂源制备超薄金属锂带的系统: CN208949364U [P]. 2019-06-07. |
NIE Yang, ZOU Wai, CAO Naizhen. System for preparing ultrathin metal lithium strip from low-grade lithium source: CN208949364U [P]. 2019-06-07. | |
40 | 张杰. 超宽金属锂带的生产方法及系统: CN106914503A [P]. 2017-07-04. |
ZHANG Jie. Production method and system for ultra-wide metallic lithium strip: CN106914503A [P]. 2017-07-04. | |
41 | 唐胜利, 郑正坤, 刘右军. 一种锂离子电池负极材料补锂方法及电池的制备方法: CN110676427A [P]. 2020-01-10. |
TANG Shengli, ZHENG Zhengkun, LIU Youjun. Lithium ion battery negative electrode material lithium supplementing method and battery preparation method: CN110676427A [P]. 2020-01-10. | |
42 | 龚志杰, 徐永强, 谢斌, 等. 用于极片补锂的装置: CN210136958U [P]. 2020-03-10. |
GONG Zhijie, XU Yongqiang, XIE Bin. A device for electrode pre-lithiation: CN210136958U [P]. 2020-03-10. | |
43 | 王晓钰, 张渝, 马磊, 等. 锂离子电池硅基负极黏结剂发展现状[J]. 化学学报, 2019, 77(1): 25-26. |
WANG Xiaoyu, ZHANG Yu, MA Lei, et al. Recent development on binders for silicon-based anodes in lithium-ion batteries[J]. Acta Chimica Sinica, 2019, 77(1): 25-26. | |
44 | FENG Kun, LI M, LIU Wenwen, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications[J]. Small, 2018, 14(8): doi: 10.1002/smll.201702737. |
45 | HOCHGATTERER N S, SCHWEIGER M R, KOLLER S, et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability[J]. Electrochemical and Solid-State Letters, 2008, 11(5): A76-A80. |
46 | MAGASINSKI A, ZDYRKO B, KOVALENKO I, et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3004-3010. |
47 | HERNANDEZ C R, ETIEMBLE A, DOUILLARD T, et al. A facile and very effective method to enhance the mechanical strength and the cyclability of Si-based electrodes for Li-ion batteries[J]. Advanced Energy Materials, 2018, 8(6): doi: 10.1002/aenm.201701787. |
48 | LI Jing, LEWIS R B, DAHN J R. Sodium carboxymethyl cellulose[J]. Electrochemical and Solid-State Letters, 2007, 10(2): 20-23. |
49 | MAZOUZI D, LESTRIEZ B, ROUÉ L, et al. Silicon composite electrode with high capacity and long cycle life[J]. Electrochemical and Solid-State Letters, 2009, 12(11): A215-A218. |
50 | LIU Jie, ZHANG Qian, WU Zhanyu, et al. A high-performance alginate hydrogel binder for the Si/C anode of a Li-ion battery[J]. Chemical Communications, 2014, 50(48): 6386-6389. |
51 | KURUBA R, DATTA M K, DAMODARAN K, et al. Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon-carbon composite rechargeable Li-ion battery anodes[J]. Journal of Power Sources, 2015, 298: 331-340. |
52 | LIU Jie, ZHANG Qian, ZHANG Tao, et al. A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries[J]. Advanced Functional Materials, 2015, 25(23): 3599-3605. |
53 | LING Min, XU Yanan, ZHAO Hui, et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries[J]. Nano Energy, 2015, 12: 178-185. |
54 | BIE Yitian, YANG Jun, NULI Yanna, et al. Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(5): 1919-1924. |
55 | JEONG You Kyeong, KWON Tae-woo, Inhwa LEE, et al. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes[J]. Energy and Environmental Science, 2015, 8(4): 1224-1230. |
56 | YOON Da Eun, HWANG Chihyun, KANG Na Ri, et al. Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders[J]. ACS Applied Materials and Interfaces, 2016, 8(6): 4042-4047. |
57 | ZHANG Li, ZHANG Liya, CHAI Lili, et al. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(44): 19036-19045. |
58 | Bonjae KOO, KIM Hyunjung, Younghyun CHO, et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries[J]. Angewandte Chemie-International Edition, 2012, 51(35): 8762-8767. |
59 | SONG Jiangxuan, ZHOU Mingjiong, YI Ran, et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries[J]. Advanced Functional Materials, 2014, 24(37): 5904-5910. |
60 | LIU Yajie, TAI Zhixin, ZHOU Tengfei, et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries[J]. Advanced Materials, 2017, 29(44): 1-11. |
61 | LOVERIDGE M J, LAIN M J, HUANG Qianye, et al. Enhancing cycling durability of Li-ion batteries with hierarchical structured silicon-graphene hybrid anodes[J]. Physical Chemistry Chemical Physics, 2016, 18(44): 30677-30685. |
62 | WEI Liangming, HOU Zhongyu. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22156-22162. |
63 | Sun Young LEE, CHOI Yunju, HONG Kyong Soo, et al. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode[J]. Applied Surface Science, 2018, 447: 442-451. |
64 | 何旻雁, 杨志伟, 王振宇, 等. 聚酰亚胺黏结剂对锂离子电池用硅碳复合材料循环性能的影响[J]. 绝缘材料, 2019, 52: 21-24, 28. |
HE Minyan, YANG Zhiwei, WANG Zhenyu, et al. Effect of polyimide binder on cycling performance of Si/C composite for Li-ion battery[J]. Insulating Materials, 2019, 52: 21-24, 28. | |
65 | TIAN Meng, CHEN Xiao, SUN Shengtong, et al. A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery[J]. Nano Research, 2019, 12(5): 1121-1127. |
66 | HIGGINS T M, PARK Sang Hoon, KING P J, et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes[J]. ACS Nano, 2016, 10(3): 3702-3713. |
67 | LIU Xuejiao, ZAI Jiantao, IQBAL A, et al. Glycerol-crosslinked PEDOT: PSS as bifunctional binder for Si anodes: Improved interfacial compatibility and conductivity[J]. Journal of Colloid and Interface Science, 2020, 565: 270-277. |
68 | TANG Ruixian, MA Lei, ZHANG Yu, et al. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode[J]. ChemElectroChem, 2020, 7: 1-10. |
69 | WU Hui, YU Guihua, PAN Lijia, et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles[J]. Nature Communications, 2013, 4: 1943-1946. |
70 | KIM Sang-Mo, KIM Myeong Hak, CHOI Sung Yeol, et al. Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes[J]. Energy and Environmental Science, 2015, 8(5): 1538-1543. |
71 | ZHANG Peng, ZHU Qizhen, GUAN Zhaoruxin, et al. A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries[J]. ChemSusChem, 2020, 13(6): 1621-1628. |
[1] | Xianxi LIU, Anliang SUN, Chuan TIAN. Research on liquid cooling and heat dissipation of lithium-ion battery pack based on bionic wings vein channel cold plate [J]. Energy Storage Science and Technology, 2022, 11(7): 2266-2273. |
[2] | Jianxiang DENG, Jinliang ZHAO, Chengde HUANG. High energy density lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2092-2102. |
[3] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[4] | HAN Junwei, XIAO Jing, TAO Ying, KONG Debin, LV Wei, YANG Quanhong. Compact energy storage: Methodology with graphenes and the applications [J]. Energy Storage Science and Technology, 2022, 11(6): 1865-1873. |
[5] | Lei LI, Zhao LI, Dan JI, Huichang NIU. Overcharge induced thermal runaway behaviors of pouch-type lithium-ion batteries with LFP and NCM cathodes: the differences and reasons [J]. Energy Storage Science and Technology, 2022, 11(5): 1419-1427. |
[6] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[7] | Nan LIN, Ulrike KREWER, Jochen ZAUSCH, Konrad STEINER, Haibo LIN, Shouhua FENG. Development and application of multiphysics models for electrochemical energy storage and conversion systems [J]. Energy Storage Science and Technology, 2022, 11(4): 1149-1164. |
[8] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[9] | Dajin LIU, Qiang WU, Renjie HE, Chuang YU, Jia XIE, Shijie CHENG. Research progress of biopolymers in Si anodes for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2156-2168. |
[10] | Yimin GUO, Dechao GUO, Qiwen ZHANG, Chao LONG, Fengrong HE. Influences of electrode structure on the electrical performances of lithium-ion capacitor [J]. Energy Storage Science and Technology, 2021, 10(6): 2106-2111. |
[11] | Lianbing LI, Sijia LI, Jie LI, Kun SUN, Zhengping WANG, Haiyue YANG, Bing GAO, Shaobo YANG. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network [J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384. |
[12] | Mengyu TIAN, Yuanjie ZHAN, Yong YAN, Xuejie HUANG. Replenishment technology of the lithium ion battery [J]. Energy Storage Science and Technology, 2021, 10(3): 800-812. |
[13] | Weihui LI, Xingguo ZHONG, Huiqiao LI. The passivation of Li anode and its application in energy storage [J]. Energy Storage Science and Technology, 2021, 10(3): 974-986. |
[14] | Ran XIONG, Shunli WANG, Chunmei YU, Lili XIA. An estimation method for lithium-ion battery SOC of special robots based on Thevenin model and improved extended Kalman [J]. Energy Storage Science and Technology, 2021, 10(2): 695-704. |
[15] | Zhendong ZHU, Huanhuan WU, Zheng ZHANG, Wen PENG, Lijuan LI. Analysis of lithium plating-stripping process in lithium-ion batteries by three-electrode measurements [J]. Energy Storage Science and Technology, 2021, 10(2): 448-453. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||