Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (2): 223-236.doi: 10.12028/j.issn.2095-4239.2016.0096
Previous Articles Next Articles
MING Hai1,2, MING Jun3, QIU Jingyi1,2, ZHANG Wenfeng1,2, ZHANG Songtong1,2, CAO Gaoping1,2
Received:
2016-11-29
Revised:
2017-01-03
Online:
2017-03-01
Published:
2017-03-01
MING Hai1,2, MING Jun3, QIU Jingyi1,2, ZHANG Wenfeng1,2, ZHANG Songtong1,2, CAO Gaoping1,2. Applications of pre-lithiation technologies in energy storage[J]. Energy Storage Science and Technology, 2017, 6(2): 223-236.
[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 5: 19-29. [2] CHO J, JEONG S, KIM Y. Commercial and research battery technologies for electrical energy storage applications[J]. Progress in Energy and Combustion Science, 2015, 48: 84-101. [3] MELOT B C, TARASCON J M. Design and preparation of materials for advanced electrochemical storage[J]. Accounts of Chemical Research, 2013, 46(5): 1226-1238. [4] DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. [5] YANG Z G, ZHANG J L, KINTNER-MEYER M C W, et al. Electrochemical energy storage for green grid[J]. Chemical Reviews, 2011, 111(5): 3577-3613. [6] SCROSATI B, ABRAHAM K, VAN SCHALKWIJK W A, et al. Lithium batteries: Advanced technologies and applications[M]. [7] NIELSEN T K, BESENBACHER F, JENSEN T R. Nanoconfined hydrides for energy storage[J]. Nanoscale, 2011, 5: 2086-2098. [8] BO Z, MAO S, HAN Z J, CEN K F, et al. Emerging energy and environmental applications of vertically-oriented graphenes[J]. Chemical Society Reviews, 2015, 44: 2108-2121. [9] BARGHAMADI M, KAPPOR A, WEN C. A review on Li-S batteries as a high efficiency rechargeable lithium battery[J]. Journal of the Electrochemical Society, 2013, 160(8): A1256-A1263. [10] SONG Z P, ZHOU H S. Towards sustainable and versatile energy storage devices: An overview of organic electrode materials[J]. Energy & Environmental Science, 2013, 8: 2280-2301. [11] MING H, KUMAR P, YANG W J, et al. Green strategy to single crystalline anatase TiO2 nanosheets with dominant (001) facets and its lithiation study toward sustainable cobalt-free lithium ion full battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3086-3095. [12] LEE S K, OH S M, PARK E, et al. Highly cyclable lithium-sulfur batteries with a dual-type sulfur cathode and a lithiated Si/SiOx nanosphere anode[J]. Nano Letters, 2015, 15(5): 2863-2868. [13] HASSOUN J, JUNG H G, LEE D J, et al. A metal-free, lithium-ion oxygen battery: A step forward to safety in lithium-air batteries[J]. Nano Letters, 2012, 12(11): 5775-5779. [14] KIM M, XU F, LEE J H, et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors[J]. Journal of Materials Chemistry A, 2014, 2: 10029-10033. [15] 张双虎, 迟彩霞, 张盛武. 锂离子电池预锂化技术的最新研究进展[J]. 电源技术, 2015, 39(7): 1543-1545. ZHANG S H, CHI C X, ZHANG S W. New progress on prelithiation in Li-ion batteries[J]. Chinese Journal of Power Sources, 2015, 39(7): 1543-1545. [16] AI G, WANG Z H, ZHAO H, et al. Scalable process for application of stabilized lithium metal powder in Li-ion batteries[J]. Journal of Power Sources, 2016, 309: 33-41. [17] JARVIS C R, LAIN M J, YAKOVLEVA M V, et al. A prelithiated carbon anode for lithium-ion battery applications[J]. Journal of Power Sources, 2006, 162(2): 800-802. [18] WANG Z H, FU Y B, ZHANG Z C, et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode—A high efficient prelithiation method for lithium-ion batteries[J]. Journal of Power Sources, 2014, 260: 57-61. [19] HE Y B, LI B H, LIU M, et al. Gassing in Li4Ti5O12-based batteries and its remedy[J]. Scientific Reports, 2012, 913: doi: 10.1038/srep00913. [20] MIYACHI M, YAMAMOTO H, KAWAI H, et al. Analysis of SiO anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2005, 152(10): A2089-A2091. [21] SEONG I W, YOON W Y. Electrochemical behavior of a silicon monoxide and Li-powder double layer anode cell[J]. Journal of Power Sources, 2010, 195(18): 6143-6147. [22] ZHAO J, LU Z, LIU N, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Communications, 2014, 9(3): 187-192. [23] DECAUX C, LOTA G, RAYMUNDO-PIÑERO E, et al. Electrochemical performance of a hybrid lithium-ion capacitor with a graphite anode preloaded from lithium bis (trifluoromethane) sulfonimide-based electrolyte[J]. Electrochimica Acta, 2012, 86: 282-286. [24] LIU M J, KUTANA A, LIU Y, et al. First-principles studies of Li nucleation on graphene[J]. The Journal of Physical Chemistry Letters, 2014, 5 (7): 1225-1229. [25] [26] CHAN C K, PENG H, TWESTEN R D, et al. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons[J]. Nano Letters, 2007, 7(2): 490-495. [27] DING F, XU W, CHOI D, et al. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22: 12745-12751. [28] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. [29] 郭择良, 伍晖. 锂离子电池硅负极循环稳定性研究进展[J]. 电化学, 2016, 22(5): 499-512. GUO Z L, WU H. Research progress in cycle stability of silicon based Li-ion battery anodes[J]. Journal of Electrochemistry, 2016, 22(5): 499-512. [30] REDDY M V, SUBBA Rao G V, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chemical Reviews, 2013, 113(7): 5364-5457. [31] MAROM R, AMALRAJ S F, LEIFER N, et al. A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21: 9938-9954. [32] LIU N, HU L B, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS Nano, 2011, 5(8): 6487-6493. [33] WANG Y, XING G Z, HAN Z J, et al. Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for high-performance rechargeable lithium ion batteries[J]. Nanoscale, 2014, 6: 8884-8890. [34] ZHAMU A, JANG B Z, JANG Z. Method of producing prelithiated anodes for secondary lithium ion batteries: US 8158282[P]. [35] PARK Y S, LEE S M. Electrochemical behavior of prelithiated ZnMn2O4 anode for lithium ion batteries[J]. Journal of Ceramic Processing Research, 2013, 14(3): 426-429. [36] MING J, KWAK W, YOUN S, et al. Lithiation of an iron oxide-based anode for stable, high-capacity lithium-ion batteries of porous carbon-Fe3O4/Li[Ni0.59Co0.16Mn0.25]O2[J]. Energy Technology, 2014, 2(9/10): 778-785. [37] LEE J H, YOON C S, HWANG J Y, et al. High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode[J]. Energy & Environmental Science, 2016, 9: 2152-2158. [38] OH H J, JO C H, YOON C S, et al. Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries[J]. NPG Asia Materials, 2016, 8(e270): doi: 10.1038/am.2016.59. [39] SEONG I W, KIM K T, YOON W Y. Electrochemical behavior of a lithium-pre-doped carbon silicon monoxide anode cell[J]. Journal of Power Sources, 2009, 189(1): 511-514. [40] XIANG B, WANG L, LIU G, et al. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell[J]. Journal of the Electrochemical Society, 2013, 160(3): A415-A419. [41] LI Y X, FITCH B. Effective enhancement of lithium-ion battery performance using SLMP[J]. Electrochemistry Communications, 2011, 13(7): 664-667. [42] WANG L, FU Y B, BATTAGLIA V S, et al. SBR-PVDF based binder for the application of SLMP in graphite anodes[J]. RSC Advances, 2013, 3: 15022-15027. [43] FORNEY M W, GANTER M J, STAUB J W, et al. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)[J]. Nano Letters, 2013, 13(9): 4158-4163. [44] YANG J, TAKEDA Y, IMANISHI N, et al. Novel composite anodes based on nano-oxides and Li2.6Co0.4N for lithium ion batteries[J]. Electrochimica Acta, 2001, 17: 2659-2664. [45] HWANG S W, YOON W Y. Effect of Li powder-coated separator on irreversible behavior of SiOx-C anode in lithium-ion batteries[J]. Journal of Electrochemical Society, 2014, 161(10): A1753-A1758. [46] MING H, MING J, OH S, et al. High dispersion of TiO2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi0.5Mn1.5O4[J]. Journal of Materials Chemistry A, 2014, 2: 18938-18945. [47] MING H, MING J, TIAN S, et al. Surfactant-assisted synthesis of Fe2O3 nanoparticles and F-doped carbon modification toward an improved Fe3O4@CFx/LiNi0.5Mn1.5O4 battery[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15499-15509 [48] MING H, MING J, KWAK W J, et al. Fluorine-doped porous carbon-decorated Fe3O4-FeF2 composite versus LiNi0.5Mn1.5O4 towards a full battery with robust capability[J]. Electrochimica Acta, 2015, 169: 291-299. [49] 明海, 明军, 邱景义, 等. 基于非锂金属负极的锂离子全电池[J]. 化学进展, 2016, 28(2/3): 204-218. MING H, MING J, QIU J Y, et al. Lithium-ion full batteries based on the anode of non-metallic lithium[J]. Progress in Chemistry, 2016, 28(2/3): 204-218. [50] ZHOU H T, WANG X H, CHEN D. Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries[J]. ChemSusChem, 2015, 8(16): 2737-2744. [51] IWAMURA S, NISHIHARA H, ONO Y, et al. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries[J]. Scientific Reports, 2015, 5: 8085. [52] 马强, 戚兴国, 容晓晖, 等. 新型固态聚合物电解质在锂硫电池中的研究[J]. 储能科学与技术, 2016, 5(5): 713-718. MA Q, QI X G, RONG X H, et al. Novel solid polymer electrolytes for all-solid-state lithium-sulfur batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 713-718. [53] 王维坤, 余仲宝, 苑克国, 等. 高比能锂硫电池关键材料的研究[J]. 化学进展, 2011, 23(0203): 540-547. WANG W K, YU Z B, YUAN K G, et al. Key materials of high energy lithium sulfur batteries[J]. Progress in Chemistry, 2011, 23(0203): 540-547. [54] AGOSTINI M, SCROSATI B, HASSOUN J. An advanced lithium-ion sulfur battery for high energy storage[J]. Advanced Energy Materials, 2015, 5(16): 1500481. [55] KOHL M, BORRMANN F, ALTHUES H, et al. Hard carbon anodes and novel electrolytes for long-cycle-life room temperature sodium-sulfur full cell batteries[J]. Advanced Energy Materials, 2016, 6(6): 1502185-1502196. [56] BRÜCKNER J, THIEMES, BÖTTGER-HILLER F, et al. Carbon-based anodes for lithium sulfur full cells with high cycle stability[J]. Advanced Functional Materials, 2014, 24(9): 1284-1289. [57] KRAUSE A, DÖRFLER S, PIWKO M, et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability[J]. Scientific Reports, 2016, 6: doi: 10.1038/srep27982. [58] SHEN C F, GE M Y, ZHANG A Y, et al. Silicon (lithiated)-sulfur full cells with porous silicon anode shielded by Nafion against polysulfides to achieve high capacity and energy density[J]. Nano Energy, 2016, 19: 68-77. [59] LI B, LI S M, XU J J, et al. A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances[J]. Energy & Environmental Science, 2016, 6: 2025-2030. [60] KIM H, LEE J T, LEE D C, et al. Enhancing performance of Li-S cells using a Li-Al alloy anode coating[J]. Electrochemistry Communications, 2013, 36: 38-41. [61] IKEDA K, TERADA S, MANDAI T, et al. Lithium-tin alloy/sulfur battery with a solvate ionic liquid electrolyte[J]. Electrochemistry, 2015, 83(10): 914-917. [62] IWAMURA S, NISHIHARA H, ONO Y, et al. Li-rich Li-Si alloy as a lithium-containing negative electrode material towards high energy lithium-ion batteries[J]. Scientific Reports, 2014, 5: doi: 10.1038/srep08085. [63] ZHANG X L, WANG W K, WANG A B, et al. Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2014, 2: 11660-11665. [64] WEINBERGER M, WOHLFAHRT-MEHRENS M. Novel strategies towards the realization of larger lithium sulfur/silicon pouch cells[J]. Electrochimica Acta, 2016, 191: 124-132. [65] FAN K L, TIAN Y H, ZHANG X J, et al. Application of stabilized lithium metal powder and hard carbon in anode of lithium-sulfur battery[J]. Journal of Electroanalytical Chemistry, 2016, 760: 80-84. [66] JHA H, BUCHBERGER I, CUI X Y, et al. Li-S batteries with Li2S Cathodes and Si/C anodes[J]. Journal of the Electrochemical Society, 2015, 162(9): A1829-A1835. [67] LEE S K, LEE Y J, SUN Y K. Nanostructured lithium sulfide materials for lithium-sulfur batteries[J]. Journal of Power Sources: 2016, 323: 174-188. [68] NAGAO M, HAYASHI A, TATSUMISAGO M, et al. Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 274: 471-476. [69] JUNG H G, HASSOUN J, PARK J B, et al. An improved high-performance lithium-air battery[J]. Nature Chemistry, 2012, 4: 579-585. [70] MING J, PARK J B, KIM H S, et al. High surface area, mesoporous carbon for low-polarization, catalyst-free lithium oxygen battery[J]. [71] MING J, WU Y Q, PARK J B, et al. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application[J]. Nanoscale, 2013, 5: 10390-10396. [72] ELIA G A, HASSOUN J. A gel polymer membrane for lithium-ion oxygen battery[J]. [73] KWAK W J, SHIN H J, REITER J, et al. Understanding problems of lithiated anode in lithium oxygen full cells[J]. Journal of Materials Chemistry A, 2016, 4: 10467-10471. [74] MING J, KWAK W J, PARK J B, et al. A physical pulverization strategy for preparing a highly active composite of CoOx and crushed graphite for lithium-oxygen batteries[J]. ChemPhysChem, 2014, 15(10): 2070-2076. [75] PARK M [76] LIU B, XU W, YAN P F, et al. Enhanced cycling stability of rechargeable Li-O2 batteries using high-concentration electrolytes[J]. Advanced Functional Materials, 2016, 26(4): 605-613. [77] ELIA G A, BERNHARD R, HASSOUN J. A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid[J]. RSC Advances, 2015, 5: 21360-21365. [78] KITAURA H, ZHOU H S. All-solid-state lithium-oxygen battery with high safety in wide ambient temperature range[J]. Scientific Reports, 2015, 5: doi: 10.1038/srep13271. [79] 张涛, 张晓平, 温兆银. 固态锂空气电池研究进展[J]. 储能科学与技术, 2016, 5(5): 702-712. ZHANG T, ZHANG X P, WEN Z Y. Progress in rechargeable solid-state Li-air batteries[J]. Energy Storage Science and Technology, 2016, 5(5): 702-712. [80] OMAR N, DAOWD M, HEGAZY O, et al. Assessment of lithium-ion capacitor for using in battery electric vehicle and hybrid electric vehicle applications[J]. Electrochimica Acta, 2012, 86: 305-315. [81] ARAVINDAN V, GNANARAJ J, LEE Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews, 2014, 114(23): 11619-11635. [82] MA Y F, CHANG H C, ZHANG M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors[J]. Advanced Materials, 2015, 27(36): 5296-5308. [83] AMATUCCI G G, BADWAY F, PASQUIER A D, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. Journal of the Electrochemical Society, 2001, 148(8): A930-A939. [84] BURKE A. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochim Acta, 2007, 53(3): 1083-1091. [85] SIVAKKUMAR S R, PANDOLFO A G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode[J]. Electrochimica Acta, 2012, 65: 280-287. [86] ZHANG J, LIU X F, WANG J, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors[J]. Electrochimica Acta, 2016, 187: 134-142. [87] SIVAKKUMAR S R, MILEV A S, PANDOLFO A G. Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors[J]. Electrochimica Acta, 2011, 56: 9700-9706. [88] LIN Y G, PARK J W, PARK M S, et al. Hard carbon-coated natural graphite electrodes for high-energy and power lithium-ion capacitors[J]. Bulletin of the Korean Chemical Society, 2015, 36(1): 150-155. [89] SCHROEDER M, MENNE S, SÉGALINI J, et al. Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors[J]. Journal of Power Sources, 2014, 266: 250-258. [90] ZHANG J, SHI Z Q, WANG C Y. Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors[J]. Electrochimica Acta, 2014, 125: 22-28. [91] ZHANG J, WU H B, WANG J, et al. Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors[J]. Electrochimica Acta, 2015, 182: 156-164. [92] KONNO H, KASASHIMA T, AZUMI K. Application of Si-C-O glass-like compounds as negative electrode materials for lithium hybrid capacitors[J]. Journal of Power Sources, 2009, 191: 623-627. [93] WEI H Y, TSAI D S, HSIEH C L. A prelithiated lithium vanadate anode and the mass balancing of its hybrid capacitor[J]. RSC Advances, 2015, 5: 69176-69183. [94] QU W H, HAN F, LU A H, et al. Combination of a SnO2-C hybrid anode and a tubular mesoporous carbon cathode in a high energy density non-aqueous lithium ion capacitor: Preparation and characterization[J]. Journal of Materials Chemistry A, 2014, 2: 6549-6557. [95] LIU M, ZHANG L X, HAN P X, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors[J]. Particle & Particle Systems Characterization, 2015, 32(11): 1006-1011. [96] BYEON A, BOOTA M, BEIDAGHI M, et al. Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors[J]. Electrochemistry Communications, 2015, 60: 199-203. [97] HAN P X, MA W, PANG S P, et al. Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte[J]. Journal of Materials Chemistry A, 2013, 1: 5949-5954. [98] |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[6] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[7] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[8] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[9] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[10] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[11] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[12] | Ce ZHANG, Siwu LI, Jia XIE. Research progress on the prelithiation technology of alloy-type anodes [J]. Energy Storage Science and Technology, 2022, 11(5): 1383-1400. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Yuqi SUN, Feng WEI, Hong ZHOU, Chaofeng ZHOU. Analysis of global lithium-sulfur battery technology competition from the perspective of patent [J]. Energy Storage Science and Technology, 2022, 11(5): 1657-1666. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||