Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (2): 213-222.doi: 10.12028/j.issn.2095-4239.2016.0080
Previous Articles Next Articles
ZHU Jiaoqun, SONG Yi, ZHOU Weibing, LIU Fengli
Received:
2016-10-13
Revised:
2016-12-23
Online:
2017-03-01
Published:
2017-03-01
ZHU Jiaoqun, SONG Yi, ZHOU Weibing, LIU Fengli. The use of carbon materials for enhancing heat transfer of organic based composite phase change materials : A review[J]. Energy Storage Science and Technology, 2017, 6(2): 213-222.
[1] FAN L, KHODADADI J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(1): 24-46. [2] 姜勇, 丁恩勇, 黎国康. 相变储能材料的研究进展[J]. 广州化学, 1999(3): 48-54. JIANG Yong, DING Enyong, LI Guokang. Progress in studies of phase change materials for heat energy storage[J]. [3] SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345. [4] 湛立智, 李素平, 张正国, 等. 添加碳素复(混)合相变储热材料的研究及应用进展[J]. 化工进展, 2007, 26(12): 1733-1737. ZHAN Lizhi, LI Suping, ZHANG Zhengguo, et al. Research and application of affix carbon composite (hybrid) phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1733-1737. [5] 吴淑英, 朱冬生, 汪南. 改善有机储热材料传热性能的研究进展及应用[J]. 现代化工, 2009, 29(10): 19-23. WU Shuying, ZHU Dongsheng, WANG [6] 杨晟, 许勇铁, 由英来. 泡沫石墨作为相变储能材料填充物的研究[J]. 合肥工业大学学报 (自然科学版), 2012, 35(5): 598-601. YANG Sheng, XU Yongtie, YOU Yinglai. Investigation of composite phase change heat storage material filled with graphite foam[J]. Journal of [7] FANG X, FAN L W, DING Q, et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J]. Energy & Fuels, 2013, 27(7): 4041-4047. [8] 李敏, 吴智深, 陈振乾, 等. 碳纤维对甘二烷相变材料热性能的影响[J]. 东南大学学报 (英文版), 2010, 26(2): 346-350. LI Min, WU Zhishen, CHEN Zhenqian, et al. Effect of carbon fiber on thermal properties of n-docosane phase change materials[J]. Journal of [9] LI J F, LU W, ZENG Y B, et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Materials & Solar Cells, 2014, 128(9): 48-51. [10] 仲亚娟, 李四中, 魏兴海, 等. 不同孔隙结构的炭材料作为石蜡相变储能材料强化传热载体[J]. 新型炭材料, 2009, 24(4): 349-353. ZHONG Yajuan, LI Sizhong, WEI Xinghai, et al. Carbon matrices with different pore structures as heat transfer intensifier in paraffin wax/carbon thermal energy storage system[J]. New Carbon Materials, 2009, 24(4): 349-353. [11] 尹辉斌, 高学农, 丁静, 等. 热适应复合相变材料的制备与热性能[J]. 太阳能学报, 2011, 32(9): 1424-1430. YIN Huibin, GAO Xuenong, DING Jing, et al. Preparation and thermal properties of thermal adaptation composite materials[J]. Acta Energiae Solaris Sinica, 2011, 32(9): 1424-1430. [12] 肖鑫, 张鹏. 泡沫石墨/石蜡复合相变材料热物性研究[J]. 工程热物理学报, 2013(3): 530-533. XIAO Xin, ZHANG Peng. Preparation and thermal characterization of graphite foam/paraffin composite phase change material[J]. Journal of Engineering Thermophysics, 2013(3): 530-533. [13] 马炳倩, 李建强, 彭志坚, 等. 石蜡基复合相变储热材料的导热性能[J]. 储能科学与技术, 2012, 1(2): 131-138. MA Bingqian, LI Jianqiang, PENG Zhijian, et al. Paraffin based composite phase change materials for thermal energy storage: Thermal conductivity enhancement[J]. Energy Storage Science and Technology, 2012, 1(2): 131-138. [14] 张秀荣, 朱冬生, 高进伟, 等. 石墨/石蜡复合相变储热材料的热性能研究[J]. 材料研究学报, 2010, 24(3): 332-336. ZHANG Xiurong, ZHU Dongsheng, GAO Jinwei, et al. Study on thermal properties of graphite/paraffin composites as phase change heat storage material[J]. Chinese Journal of Materials Research, 2010, 24(3): 332-336. [15] WARZOHA R J, WEIGAND R M, FLEISCHER A S. Temperature-dependent thermal properties of a paraffin phase change material embedded with herringbone style graphite nanofibers[J]. Applied Energy, 2015, 137: 716-725. [16] 丁晴, 方昕, 范利武, 等. 不同二维纳米填料对复合相变材料导热系数的影响[J]. 储能科学与技术, 2014, 3(3): 250-255. DING Qing, FANG Xin, FAN Liwu, et al. Influence of 2-D nanofillers on the thermal conductivity of composite PCMs[J]. Energy Storage Science and Technology, 2014, 3(3): 250-255. [17] FAN L W, FANG X, WANG X, et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy, 2013, 110(5): 163-172. [18] LI M, CHEN M, WU Z, et al. Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material[J]. Energy Conversion & Management, 2014, 83(7): 325-329. [19] CUI Y, LIU C, HU S, et al. The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials[J]. Solar Energy Materials & Solar Cells, 2011, 95(4): 1208-1212. [20] HARISH S, OREJON D, TAKATA Y, et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering, 2015, 80(5): 205-211. [21] SARI A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2009, 93(5): 571-576. [22] WANG J, XIE H, XIN Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. [23] DA H C, LEE J, HONG H, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCMs) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42: 112-120. [24] 周卫兵, 蔡凡凡, 朱教群, 等. 己二酸/膨胀石墨复合相变材料性能研究[J]. 功能材料, 2014, 45(5): 15075-15079. ZHOU Weibing, CAI Fanfan, ZHU Jiaoqun, et al. Study on performance of adipic acid/expanded graphite composite phase change materials[J]. Journal of Functional Materials, 2014, 45(5): 15075- 15079. [25] 张东. 多孔矿物介质对有机相变材料导热性能的影响[J]. 矿物岩石, 2007, 27(3): 42-46. ZHANG Dong. Effect of porous minerals on the thermal conductivity of organic phase change material[J]. Journal of Mineralogy and Petrology, 2007, 27(3): 42-46. [26] 高学农, 刘欣, 孙滔, 等. 基于复合相变材料的电子芯片热管理性能研究[J]. 高校化学工程学报, 2013, 27(2): 187-192. GAO Xuenong, LIU Xin, SUN Tao, et al. Research on the thermal management performance of electronic chip with composite phase change material[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(2): 187-192. [27] ZHANG L, ZHU J, ZHOU W, et al. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials[J]. Energy, 2012, 39(1): 294-302. [28] KARTHIK M, FAIK A, BLANCO-RODRIGUEZ P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94(14): 266-276. [29] CHOW L C, ZHONG J K, BEAM J E. Thermal conductivity enhancement for phase change storage media[J]. International Communications in Heat & Mass Transfer, 1989, 23(1): 91-100. [30] NAYAK K C, SAHA S K, SRINIVASAN K, et al. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers[J]. International Journal of Heat & Mass Transfer, 2006, 49(11): 1833-1844. [31] METTAWEE E B S, ASSASSA G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7): 839-845. [32] 王继芬, 谢华清, 辛忠, 等. 纳米ZnO/石蜡复合相变材料的热物理性质研究[J]. 工程热物理学报, 2011, 32(11): 1897-1899. WANG Jifen, XIE Huaqing, XIN Zhong, et al. Study on the thermophysical properties of paraffin wax composites containing ZnO nanoparticles[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1897-1899. [33] TANG B, QIU M, ZHANG S. Thermal conductivity enhancement of PEG/SiO2, composite PCM by in situ Cu doping[J]. Solar Energy Materials & Solar Cells, 2012, 105(19): 242-248. [34] FAN L, KHODADADI J M. An experimental investigation of enhanced thermal conductivity and expedited unidirectional freezing of cyclohexane-based nanoparticle suspensions utilized as nano-enhanced phase change materials(NePCM)[J]. International Journal of Thermal Sciences, 2012, 62(9): 120-126. [35] TANG B, WU C, QIU M, et al. PEG/SiO2-Al2O3, hybrid form-stable phase change materials with enhanced thermal conductivity[J]. Materials Chemistry & Physics, 2014, 144(1/2): 162-167. [36] ŞAHAN N, FOIS M, PAKSOY H. Improving thermal conductivity phase change materials—A study of paraffin nanomagnetite composites[J]. Solar Energy Materials & Solar Cells, 2015, 137: 61-67. [37] 周春玉, 曾亮, 吉莉, 等. 石墨烯及其复合材料导热性能的研究现状[J]. 材料开发与应用, 2010, 25(6): 94-100. ZHOU Chunyu, ZENG Liang, JI Li, et al. Research on the thermal conductivities of graphene and graphene based composite materials[J]. Development and Application of Materials, 2010, 25(6): 94-100. [38] LIU Lingkun, SU Di, TANG Yaojie, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 62: 305-317. [39] 王大伟, 余荣升, 晏华, 等. 碳纤维/石蜡/膨胀石墨复合相变材料的制备及强化传热研究[J]. 材料导报, 2014, 28(24): 70-73. WANG Dawei, YU Rongsheng, YAN Hua, et al. Study on preparation and heat transfer enhancement of carbon fiber/paraffin/ expanded graphite phase change composites[J]. Materials Review, 2014, 28(24): 70-73. [40] 陈嘉杰, 徐涛, 方晓明, 等. 膨胀石墨基十二烷复合相变蓄冷材料的性能研究[J]. 工程热物理学报, 2015, 36(6): 1307-1310. CHEN Jiajie, XU Tao, FANG Xiaoming, et al. Performance study on expanded graphite based dodecane composite phase change material for cold thermal energy storage[J]. Journal of Engineering Thermophysics, 2015, 36(6): 1307-1310. [41] MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661. [42] 田云峰, 李珍, 王洋, 等. 石蜡/不同粒径膨胀石墨复合相变储热材料的制备和性能[J]. 材料研究学报, 2015, 29(4): 262-268. TIAN Yunfeng, LI Zhen, WANG Yang, et al. Preparation and performance of a phase change heat storage composite of paraffin/different particle sized expanded graphite[J]. Chinese Journal of Materials Research, 2015, 29(4): 262-268. [43] 郭茶秀, 王闯. 基于石墨泡沫强化的相变储能材料研究进展[J]. 新能源进展, 2014, 2(2): 146-150. GUO Chaxiu, WANG Chuang. Research progress on phase change material enhancement by graphite foam[J]. Advances in New and Renewable Energy, 2014, 2(2): 146-150. [44] GUO C X, MA X L, YANG L. PCM/graphite foam composite for thermal energy storage device[C]//Iop Conference Series: Materials Science & Engineering, IOP Publishing, 2015. [45] ZHONG Y, GUO Q, LI S, et al. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2010, 94(6): 1011-1014. [46] 宋金亮, 郭全贵, 仲亚娟, 等. 高密度石墨泡沫及其石蜡复合材料的热物理性能 (英文)[J]. 新型炭材料, 2012, 27(1): 27-34. SONG Jinliang, GUO Quangui, ZHONG Yajuan, et al. Thermophysical properties of high-density graphite foams and their paraffin composites[J]. New Carbon Materials, 2012, 27(1): 27-34. [47] JI H, SELLAN D P, PETTES M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage[J]. Energy & Environmental Science, 2014, 7(3): 1185-1192. [48] 戴琴, 周莉, 朱月, 等. 改善石蜡相变材料导热性能的研究进展[J]. 当代化工, 2014, 43(7): 1257-1259. DAI Qin, ZHOU Li, ZHU Yue, et al. Research progress in improving thermal conductivity of paraffin PCM[J]. Contemporary Chemical Industry, 2014, 43(7): 1257-1259. [49] FUKAI J, KANOU M, KODAMA Y, et al. Thermal conductivity enhancement of energy storage media using carbon fibers[J]. Energy Conversion & Management, 2000, 41(14): 1543-1556. [50] ELGAFY A, LAFDI K. Effect of carbon nanofiber additives on thermal behavior of phase change materials[J]. Carbon, 2005, 43(15): 3067-3074. [51] FRUSTERI F, LEONARDI V, VASTA S, et al. Thermal conductivity measurement of a PCM based storage system containing carbon fibers[J]. Applied Thermal Engineering, 2005, 25(11/12): 1623-1633. [52] KARAIPEKLI A, SARI A, KAYGUSUZ K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy, 2007, 32(13): 2201-2210. [53] KHODADADI J M, FAN L, BABAEI H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review[J]. Renewable & Sustainable Energy Reviews, 2013, 24(10): 418-444. [54] 乔辉, 杨笑, 魏金柱. 碳纳米纤维的制备及应用[J]. 技术与市场, 2010, 17(6): 13-14. QIAO Hui, YANG Xiao, WEI Jinzhu. Preparation and application of carbon nanofibers[J]. Technology and Market, 2010, 17(6): 13-14. [55] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physical Review Letters, 2001, 87(87): 265-266. [56] 李新芳, 吴淑英, 朱冬生. 碳纳米管/石蜡复合相变储能材料的导热性能研究[J]. 现代化工, 2015, 35(5): 113-116. LI Xinfang, WU Shuying, ZHU Dongsheng. Thermal conductivity of CNTs/paraffin phase change composites[J]. Modern Chemical Industry, 2015, 35(5): 113-116. [57] 王继芬, 谢华清, 辛忠, 等. 酸化碳纳米管棕榈酸复合相变储能材料的研究[J]. 工程热物理学报, 2010, 31(8): 1389-1391. WANG Jifen, XIE Huaqing, XIN Zhong, et al. Experimental study on palmitic acid composites containing carbon nanotubes by acid treatment[J]. Journal of Engineering Thermophysics, 2010, 31(8): 1389-1391. [58] 王晓, 丁晴, 姚晓莉, 等. 石蜡基碳纳米管复合相变材料的热物性研究[J]. 热科学与技术, 2013, 12(2): 124-130. WANG Xiao, DING Qing, YAO Xiaoli, et al. Thermophysical properties of paraffin-based composite phase change materials filled with carbon nanotubes[J]. Journal of Thermal Science and Technology, 2013, 12(2): 124-130. [59] GHOSH S, CALIZO I, DEWELDEBRHA D, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits[J]. Applied Physics Letters, 2008, 92(15): 151911. [60] 吴淑英, 童旋, 龚曙光, 等. 纳米石墨烯片/石蜡复合相变蓄热材料的热性质研究[J]. 化工新型材料, 2014, 42(7): 105-107. WU Shuying, TONG Xuan, GONG Shuguang, et al. Thermal property of nano-GnPs/paraffin heat storage phase change composite material[J]. New Chemical Materials, 2014, 42(7): 105-107. [61] SHAIKH S, LAFDI K, HALLINAN K. Carbon nanoadditives to enhance latent energy storage of phase change materials[J]. Journal of Applied Physics, 2008, 103(9): 519-525. |
[1] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[2] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[3] | Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976. |
[4] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[5] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[6] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[7] | XU Zhong, HOU Jing, WAN Shuquan, LI Jun, WU Enhui, LIU Qianshu, GAN Xin. Preparation and thermal properties of metal foam/ paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. |
[8] | SANG Lixia, XU Yongwang, LI Feng, ZHANG Yating, MA Wentong, CHEN Xu, WANG Hao. Preparation of form-stable carbonates/magnesium oxide-flake graphite composite thermal storage material and its thermal conductivity [J]. Energy Storage Science and Technology, 2019, 8(5): 886-890. |
[9] | LI Chen, ZHANG Xiong, WANG Kai, SUN Xianzhong, MA Yanwwei. Supercapacitive application of carbon materials produced by CO2 conversion [J]. Energy Storage Science and Technology, 2017, 6(5): 1041-1049. |
[10] | CHE Haishan, CHEN Qianqiao, ZHONG Qin, HE Si. Preparation and thermal properties of erythritol-based phase change composite fibers [J]. Energy Storage Science and Technology, 2017, 6(4): 644-654. |
[11] | CHENG Xiaomin1,2, WANG Qingmeng1, LI Yuanyuan1, YU Guoming2. Effect of In on the thermal properties and microstructure of Sn-Bi-Zn alloy#br# [J]. Energy Storage Science and Technology, 2017, 6(4): 662-668. |
[12] | WANG Ya, ZHANG Dong. Preparation and thermal properties of hybrid composites made of a phase change material and three-dimensional networked graphene [J]. Energy Storage Science and Technology, 2017, 6(4): 675-680. |
[13] | NAVARRO Maria Elena1, PALACIOS Anabel1, HUGHES Tomos1, CONNOLLY Chloe1, UPPAL Harkiran1, CONG Lin1, LEI Xianzhang2, QIAO Geng1,2, LENG Guanghui1, DING Yulong1. Ceramic-salt based composites for thermal energy storage [J]. Energy Storage Science and Technology, 2017, 6(4): 688-695. |
[14] | YUAN Huadong, LUO Jianmin, JIN Chengbin, SHENG Ouwei, HUANG Hui, ZHANG Wenkui, TAO Xinyong . Carbon materials with modified surfaces and interfaces for the high performance cathode of lithium sulfur batteries [J]. Energy Storage Science and Technology, 2017, 6(3): 380-410. |
[15] | WANG Caixia1, HUANG Yun1, YAO Hua1, YE Feng1, YANG Jun1, DING Yulong2. Review of recent advances in research of nanofluids [J]. Energy Storage Science and Technology, 2017, 6(1): 24-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||