Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (4): 1105-1112.doi: 10.19799/j.cnki.2095-4239.2020.0044
• Energy Storage Materials and Devices • Previous Articles Next Articles
LIU"Lihui(), MO"Yajing, SUN"Xiaoqin, LI"Jie(), LI"Chuanchang, XIE"Baoshan
Received:
2020-01-18
Revised:
2020-02-16
Online:
2020-07-05
Published:
2020-06-30
Contact:
Jie LI
E-mail:1491330248@qq.com;lijie@csust.edu.cn
CLC Number:
LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112.
1 | Al-ABIDI A A, MAT S B, SOPIAN K, et al. Review of thermal energy storage for air conditioning systems[J]. Renewable& Sustainable Energy Reviews, 2012, 16(8): 5802-5819. |
2 | MEMON S A, LIAO W, YANG S, et al. Development of composite PCMs by incorporation of paraffin into various building materials[J]. Materials, 2015, 8(2): 499. |
3 | KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation[J]. Journal of Power Sources, 2005, 142(1/2): 345-353. |
4 | SABBAH R, KIZILEI R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2015, 182(2): 630-638. |
5 | 叶锋, 曲江兰, 仲俊瑜, 等. 相变储热材料研究进展[J]. 过程工程学报, 2010, 10(6): 1231-1241. |
YE Feng, QU Jianglan, ZHONG Junyu, et al. Research advances in phase change materials for thermal energy storage[J]. The Chinese Journal of Process Engineering, 2010, 10(6): 1231-1241. | |
6 | SHARMA A, TYAGI V V, CHEN C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable & Sustainable Energy Reviews, 2009, 13(2): 318-345. |
7 | BAETENS R, JELLE B P, GUSTAVSEN A. Phase change materials for building applications: A state-of-the-art review[J]. Energy & Buildings, 2010, 42(9): 1361-1368. |
8 | 关志猛. 石蜡基复合相变材料的制备研究[D]. 沈阳: 沈阳建筑大学, 2018. |
GUAN Zhimeng. Study on the preparation of paraffin based composite phase change materials[D]. Shenyang: Shenyang Jianzhu University, 2018. | |
9 | ZHAO C Y, LU W, TIAN Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
10 | WU S Y, WANG H, XIAO S, et al. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials[J]. Journal of Thermal Analysis & Calorimetry, 2012, 110(3): 1127-1131. |
11 | MILLS A, FARID M, SELMAN J R, et al. Thermal conductivity enhancement of phase change materials using a graphite matrix[J]. Applied Thermal Engineering, 2006, 26(14/15): 1652-1661. |
12 | KIM S, DRZA L, LAWRENCE T, et al. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets[J]. Solar Energy Materials & Solar Cells, 2009, 93(1): 136-142. |
13 | METTAWE E, EMANBELLAH S, ASSASS A, et al. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7): 839-845. |
14 | WU S, ZHU D, ZHANG X, et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels, 2010, 24(3): 1894-1898. |
15 | KUMARESAN V, VELRAJ R, DAS S K. The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification[J]. Heat & Mass Transfer, 2012, 48(8): 1345-1355. |
16 | MURUGAN P, GANESH K P, KUMARESAN V, et al. Thermal energy storage behaviour of nanoparticle enhanced PCM during freezing and melting[J]. Phase Transitions, 2017 (4): 1-17. |
17 | 陶艳平. 导热增强型复合相变材料的影响因素及传热机理研究[D]. 郑州: 河南工业大学, 2016. |
TAO Yanping. Study on influencing factors and heat transfer mechanism of heat conduction enhanced composite phase change materials[D]. Zhengzhou: Henan University of Technology, 2016. | |
18 | 夏莉, 张鹏, 周圆, 等. 石蜡与石蜡/膨胀石墨复合材料充/放热性能研究[J]. 太阳能学报, 2010, 31(5): 610-614. |
XIA Li, ZHANG Peng, ZHOU Yuan, et al. Study on the charging/discharging characteristics of paraffin and paraffin/expanded graphite composite material[J]. Acta Energiae Solaris Sinica, 2010, 31(5): 610-614. | |
19 | 杨学贵, 曾攀. 纳米级石墨晶体的各向异性力学性能的计算[J]. 应用基础与工程科学学报, 2006, 14(3): 375-383. |
YANG Xuegui, ZENG Pan. Numerical simulation of anisotropic mechanical properties of nano-graphite crystals[J]. Journal of Basic Science and Engineering, 2006, 14(3): 375-383. | |
20 | 邱海鹏, 刘朗. 高导热炭基功能材料[J]. 新型炭材料, 2002, 17 (4): 80. |
QIU Haipeng, LIU Lang. Carbon matrix function materials of high thermal conductivity[J]. New Carbon Materials, 2002, 17 (4): 80. | |
21 | 高晓晴, 郭全贵, 刘朗, 等. 高导热炭材料的研究进展[J]. 功能材料, 2006, 37(2): 173-177. |
GAO Xiaoqing, GUO Quangui, LIU Lang, et al. The study progress on carbon materials with high thermal conductivity[J]. Journal of Functional Materials, 2006, 37(2): 173-177. | |
22 | KUMARASINGHE K D M S P K, KUMARA G R A, RAJAPAKSE R M G, et al. Activated coconut shell charcoal based counter electrode for dye-sensitized solar cells[J]. Organic Electronics, 2019, 71: 93-97. |
23 | JEFFRY S N A, JAYA R P, HASSAN N A, YACCOB H, et al. Mechanical performance of asphalt mixture containing nano-charcoal coconut shell ash [J]. Construction and Building Materials, 2018, 173: 40-48. |
24 | 谢凤, 葛世荣, 李新年, 等. 表面活性剂在润滑油中对纳米石墨分散稳定性的影响[J]. 润滑与密封, 2012, 37(4): 1-5. |
XIE Feng, GE Shirong, LI Xinnian, et al. Influence of surfactants on the dispersion stability of nanographite in the lubricating oil[J]. Lubrication Engineering, 2012, 37(4): 1-5. | |
25 | JOHNATHAN J V, SANESHAN G, PETER V. Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations[J]. International Journal of Heat & Mass Transfer, 2005, 48(13): 2673-2683. |
26 | KHALIL K, KAMBIZ V, MARILYN L. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J]. International Journal of Heat & Mass Transfer, 2003, 46(19): 3639-3653. |
27 | 麦松威. 高等无机结构化学第二版[M]. 北京: 北京大学出版社, 2006: 381. |
[1] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[2] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[3] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[4] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[5] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[6] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[7] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
[8] | Bohui LU, Zhicheng SHI, Yongxue ZHANG, Hongyu ZHAO, Zixi WANG. Investigation of the charging and discharging performance of paraffin/nano-Fe3O4 composite phase change material in a shell and tube thermal energy storage unit [J]. Energy Storage Science and Technology, 2021, 10(5): 1709-1719. |
[9] | Xinmei LUO, Jia'an GU. Numerical analysis of fractal fins with different aspect ratios to enhance phase change material melting heat transfer [J]. Energy Storage Science and Technology, 2021, 10(2): 523-533. |
[10] | Haimin WANG, Yufei WANG, Feng HU. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials [J]. Energy Storage Science and Technology, 2021, 10(1): 210-217. |
[11] | Peng SHENG, LI XU, Guangyao ZHAO, Yan HAN, Yuting WU. Preparation and thermophysical properties of novel mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2021, 10(1): 170-176. |
[12] | Hang TU, Hang ZHANG, Lihui LIU, Jie LI, Xiaoqin SUN. Study on heat transfer of phase change materials imbedded in a concrete wall [J]. Energy Storage Science and Technology, 2021, 10(1): 287-294. |
[13] | Tingting DENG, Yingling CAI. Effect of expanded graphite on the melting and solidification of paraffin in cage-drawer water tank [J]. Energy Storage Science and Technology, 2021, 10(1): 190-197. |
[14] | WAN Qian, HE Luxi, HE Zhengbin, YI Songlin. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. |
[15] | ZHANG Chunyu, GUO Hang, WU Yuting, ZHANG Cancan, YE Fang, MA Chongfang. Forced convection heat transfer characteristics in a circular tube with low-melting-point quaternary nitrate [J]. Energy Storage Science and Technology, 2020, 9(4): 1091-1097. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||