Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 9-18.doi: 10.19799/j.cnki.2095-4239.2021.0355
• Energy Storage Materials and Devices • Previous Articles Next Articles
Qingmeng WANG1(), Zhi LIU1, Xiaomin CHENG1,2(), Qianju CHENG1, Zean LYU1
Received:
2021-07-16
Revised:
2021-09-15
Online:
2022-01-05
Published:
2022-01-10
Contact:
Xiaomin CHENG
E-mail:wangqingmeng@whut.edu.cn;chengxm@whut.edu.cn
CLC Number:
Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy[J]. Energy Storage Science and Technology, 2022, 11(1): 9-18.
Table 3
Specific heat values of alloys at different temperatures before and after corrosion"
合金样品 | 数值 | 温度/℃ | |||||
---|---|---|---|---|---|---|---|
60 | 80 | 100 | 150 | 170 | 190 | ||
腐蚀前 Sn-50Bi-2Zn | 比热容 /[J/(g·K)] | 0.19 | 0.21 | 0.18 | 0.21 | 0.22 | 0.23 |
平均值 /[J/(g·K)] | 0.19 | 0.22 | |||||
腐蚀前 (Sn-50Bi-2Zn)-7In | 比热容 /[J/(g·K)] | 0.31 | 0.32 | 0.33 | 0.36 | 0.34 | 0.35 |
平均值 /[J/(g·K)] | 0.32 | 0.35 | |||||
腐蚀后 Sn-50Bi-2Zn | 比热容 /[J/(g·K)] | 0.23 | 0.24 | 0.25 | 0.25 | 0.26 | 0.27 |
平均值 /[J/(g·K)] | 0.24 | 0.26 | |||||
腐蚀后 (Sn-50Bi-2Zn)-7In | 比热容 /[J/(g·K)] | 0.34 | 0.36 | 0.35 | 0.36 | 0.38 | 0.37 |
平均值 /[J/(g·K)] | 0.35 | 0.37 |
Table 6
EDS analysis of corrosion zone of 304 stainless steel (atom fration)"
区域/元素 | C | O | Cr | Fe | Sn | Bi | Ni | Zn | In |
---|---|---|---|---|---|---|---|---|---|
A | 8.77 | — | 1.30 | 88.92 | 1.01 | — | — | — | — |
B | 5.03 | 4.57 | 8.57 | 25.87 | 44.99 | 9.83 | 1.13 | — | — |
C | 2.16 | — | 8.85 | 74.96 | 6.42 | 7.61 | — | — | — |
D | 1.88 | 8.03 | 13.86 | 1.99 | 3.58 | 69.12 | — | 1.54 | — |
E | 7.86 | — | 12.79 | 71.28 | — | — | 7.69 | — | — |
F | 8.99 | — | 25.95 | 45.24 | 13.63 | — | 5.68 | 0.77 | — |
G | 5.78 | — | 6.17 | 16.71 | 33.47 | 25.91 | — | 0.77 | 3.28 |
Table 10
Gibbs free energy of elements in experimental materials"
氧化反应 | ?G?/(J/mol) | |||
---|---|---|---|---|
298 K | 400 K | 600 K | 800 K | |
Sn→SnO | -302.61 | -309.06 | -325.03 | -344.30 |
Sn→SnO2 | -596.33 | -602.56 | -619.43 | -641.61 |
Bi→Bi2O3 | -615.886 | -633.08 | -675.29 | -725.87 |
Zn→ZnO | -361.08 | -366.18 | -379.44 | -396.05 |
Ni→NiO | -426.93 | -455.53 | -469.45 | -486.13 |
Fe→Fe2O3 | -851.58 | -862.21 | -891.82 | -930.91 |
Cr→Cr2O3 | -1153.88 | -1163.84 | -1191.52 | -1227.35 |
In→In2O3 | -958.10 | -970.75 | -1003.66 | -1044.83 |
1 | MEHRALI M, TEN ELSHOF J E, SHAHI M, et al. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material[J]. Chemical Engineering Journal, 2021, 405: doi: 10.1016/j.cej.2020.126624. |
2 | YANG R T, LI D, SALAZAR S L. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material[J]. Solar Energy Materials and Solar Cells, 2021, 219: doi: 10.1016/j.solmat.2020.110792. |
3 | LI C C, WANG M F, XIE B S, et al. Enhanced properties of diatomite-based composite phase change materials for thermal energy storage[J]. Renewable Energy, 2020, 147: 265-274. |
4 | 张佳利, 丁宇, 曲丽洁, 等. 石蜡/膨胀石墨复合相变储热单元的放热性能[J]. 储能科学与技术, 2019, 8(1): 108-115. |
ZHANG J L, DING Y, QU L J, et al. Discharge performance of a thermal energy storage unit with paraffin-expanded graphite composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(1): 108-115. | |
5 | 杨岳澔, 程晓敏, 李丹, 等. 硬脂酸/改性碳纳米管复合相变储热材料性能[J]. 储能科学与技术, 2019, 8(4): 759-763. |
YANG Y H, CHENG X M, LI D, et al. Properties of stearic acid/modified carbon nanotube composite phase change materials[J]. Energy Storage Science and Technology, 2019, 8(4): 759-763. | |
6 | WANG Q M, CHENG X M, LI Y Y, et al. Microstructures and thermal properties of Sn-Bi-Pb-Zn alloys as heat storage and transfer materials[J]. Rare Metals, 2019, 38(4): 350-358. |
7 | GE H S, LI H Y, MEI S F, et al. Low melting point liquid metal as a new class of phase change material: an emerging frontier in energy area[J]. Renewable & Sustainable Energy Reviews, 2013, 21: 331-346. |
8 | 李元元, 程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术, 2013, 2(3): 189-198. |
LI Y Y, CHENG X M. Review on the low melting point alloys for thermal energy storage and heat transfer applications[J]. Energy Storage Science and Technology, 2013, 2(3): 189-198. | |
9 | WANG J M, JIANG Y M, NI Y F, et al. Investigation on static and dynamic corrosion behaviors of thermal energy transfer and storage system materials by molten salts in concentrating solar power plants[J]. Materials and Corrosion, 2019, 70: doi: 10.1002/maco.201810362. |
10 | 李懿德. 太阳能热发电用不锈钢渗铝工艺对其抗腐蚀和疲劳行为的影响[D]. 长沙: 长沙理工大学, 2018. |
LI Y D. The effect of aluminizing process on corrosion resistance and fatigue behavior of stainless steel for solar thermal power generation system[D]. Changsha: Changsha University of Science & Technology, 2018. | |
11 | 张恩耀, 崔珊, 周鹏, 等. 太阳能热发电高温熔盐腐蚀机理及其影响因素[J]. 化工科技, 2021, 29(1): 71-76. |
ZHANG E Y, CUI S, ZHOU P, et al. Corrosion mechanism and influence factors of high temperature molten salt[J]. Science & Technology in Chemical Industry, 2021, 29(1): 71-76. | |
12 | ARGUELLES-OJEDA J L, MORENO-PALMERIN J, SALDAA-ROBLES A, et al. Corrosion behavior of boride diffusion layer on CoCrMo alloy surface[J]. Indian Journal of Engineering and Materials Sciences, 2020, 27(1): 87-95. |
13 | 付沙沙, 马胜强, 马胜超, 等. 液态金属腐蚀研究进展[J]. 中国铸造装备与技术, 2020, 55(4): 34-42. |
FU S S, MA S Q, MA S C, et al. Research progress of liquid metal corrosion[J]. China Foundry Machinery & Technology, 2020, 55(4): 34-42. | |
14 | WINT N, WARREN D J, DEVOOYS A, et al. The Use of chromium and chromium(Ⅲ) oxide PVD coatings to resist the corrosion driven coating delamination of organically coated packaging steel[J]. Journal of The Electrochemical Society, 2020, 167(14): doi: 10.1149/1945-7111/abc360. |
15 | 鞠娜, 雷玉成, 陈钢, 等. 410不锈钢在550 ℃流动的铅铋共晶合金中的腐蚀行为[J]. 材料导报, 2019, 33(20): 3489-3493. |
JU N, LEI Y C, CHEN G, et al. Corrosion behavior of stainless steel 410 in flowing lead-bismuth eutectic alloy at 550 ℃[J]. Materials Review, 2019, 33(20): 3489-3493. | |
16 | KANG S K, RAMACHANDRAN V. Growt.h kinetics of intermetallic phases at the liquid Sn and solid Ni interface[J]. Scripta Metallurgica, 1980, 14(4):421-424. |
17 | EMMERICH T, SCHROER C. Corrosion in austenitic steels and nickel-based alloys caused by liquid tin at high temperature[J]. Corrosion Science, 2017, 120: 171-183. |
18 | CHEN J J, SONG X P, WANG H, et al. Effect of temperature on corrosion behavior of 304 stainless steel in liquid Sn[J]. Rare Metal Materials and Engineering, 2018, 47(9): 2642-2646. |
19 | SCHROER C, WEDEMEYER O, NOVOTNY J, et al. Selective leaching of nickel and chromium from type 316 austenitic steel in oxygen-containing lead-bismuth eutectic (LBE)[J]. Corrosion Science, 2014, 84(3): 113-124. |
20 | KONDO M, ISHII M, MUROGA T. Corrosion of steels in molten gallium (Ga), tin (Sn) and tin lithium alloy (Sn-20Li)[J]. Fusion Engineering & Design, 2015, 98: 2003-2008. |
21 | YUAN J W, ZHANG K, ZHANG X H, et al. Thermal characteristics of Mg-Zn-Mn alloys with high specific strength and high thermal conductivity[J]. Journal of Alloys & Compounds, 2013, 578(6): 32-36. |
22 | ISHIDA T. The reaction of solid iron with molten tin[J]. Transactions of the Japan Institute of Metals, 1973, 14(1): 37-44. |
23 | SZAKALOS P, PETTERSSON R, HERTZMAN S. An active corrosion mechanism for metal dusting on 304L stainless steel[J]. Corrosion Science, 2002, 44(10): 2253-2270. |
24 | 韩立荣. 金属的腐蚀与防护[J]. 中国金属通报, 2019(1): 230-231. |
HAN L R. Metal corrosion and protection[J]. China Metal Bulletin, 2019(1): 230-231. | |
25 | BÖRNSTEIN L. Thermodynamic properties of inorganic material, Scientific Group Thermodata Europe (SGTE)[M]. Berlin, Springer, 1999, 19A1. |
[1] | Wenbing SONG, Yuanwei LU, Xiaotong CHEN, Cong HE, Zhansheng FAN, Yuting WU. The preparation and thermophysical properties of chloride/ceramic-shaped stabilized composite phase-change materials [J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728. |
[2] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[3] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[4] | Peng SHENG, LI XU, Guangyao ZHAO, Yan HAN, Yuting WU. Preparation and thermophysical properties of novel mixed nitrate molten salts [J]. Energy Storage Science and Technology, 2021, 10(1): 170-176. |
[5] | ZHANG Guocai 1,2,3,XU Zhe1,CHEN Yunfa2,LI Jianqiang1. Progress in metal-based phase change materials for thermal energy storage applications [J]. Energy Storage Science and Technology, 2012, 1(1): 74-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||