Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (1): 19-29.doi: 10.19799/j.cnki.2095-4239.2021.0358
• Energy Storage Materials and Devices • Previous Articles Next Articles
Huihui YANG(), Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU()
Received:
2021-07-20
Revised:
2021-08-30
Online:
2022-01-05
Published:
2022-01-10
Contact:
Yong LU
E-mail:1365188006@qq.com;101004556@seu.edu.cn
CLC Number:
Huihui YANG, Li ZENG, Bo TANG, Xiaoqing WANG, Yong LU. Experimental study on an EG/paraffin composite thermal storage material and its feasibility for off-peak power heating utilization[J]. Energy Storage Science and Technology, 2022, 11(1): 19-29.
Table 3
Preliminary Investment Estimation of off-peak Power Thermal Storage Wall"
项目 | 规格 | 所需数量 | 单价 | 费用/万元 | 备注 |
---|---|---|---|---|---|
复合PCM | 石蜡、EG | 7.71吨 | 0.7万元/吨 | 5.40 | — |
电加热膜 | 聚酰亚胺 | 514 m2 | 0.006万元/m2 | 3.08 | — |
换热管 | 铜 | 4.77吨 | 3.98万元/吨 | 18.99 | 密度8.96×103 kg/m3 |
蓄热箱体 | 304不锈钢 | 9吨 | 1.65万元/吨 | 14.90 | 密度7.93×103 kg/m3 |
保温材料 | 聚氨酯泡沫 | 1.8吨 | 0.45万元/吨 | 0.81 | — |
轴流风机 | NTF2-8025/DC24S | 400 | 12.5元/个 | 0.5 | 单个风机功率为20 W |
管路配件及控制系统 | — | — | — | 4.85 | 按设备价格的10%计算 |
1 | 国家能源局. 2020年全社会用电量同比增长3.1% [EB/OL]. [2021-01-20]. http://www.nea.gov.cn/2021-01/20/c_139682386.htm. |
National Energy Administration. The electricity consumption of the whole society in 2020 increased by 3.1% year-on-year[EB/OL]. [2021-01-20]. http://www.nea.gov.cn/2021-01/20/c_139682386.htm. | |
2 | 邢作霞, 赵海川, 马士平, 等. 电制热固体储热装置关键参数设计研究和经济性评估[J]. 储能科学与技术, 2019, 8(6): 1211-1216. |
XING Z X, ZHAO H C, MA S P, et al. Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device[J]. Energy Storage Science and Technology, 2019, 8(6): 1211-1216. | |
3 | 中华人民共和国国家发展与改革委员会. 关于推进电能替代的指导意见[EB/OL]. [2016-05-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160524_963071.html. |
National Development and Reform Commission. Guiding opinions on promoting electricity substitution[EB/OL]. [2016-05-24]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/201605/t20160524_963071.html. | |
4 | SUN Y, PANCHABIKESAN K, JOYBARI M M, et al. Enhancement in peak shifting and shaving potential of electrically heated floor residential buildings using heat extraction system[J]. Journal of Energy Storage, 2018, 18: 435-446. |
5 | 邓雅军, 卞瑞豪, 王文昭, 等. 太阳能热发电的多级蓄热技术研究进展[J]. 科学技术与工程, 2021, 21(13): 5179-5187. |
DENG Y J, BIAN R H, WANG W Z, et al. Review on multi-stage thermal storage systems for solar power generation[J]. Science Technology and Engineering, 2021, 21(13): 5179-5187. | |
6 | 王波, 马睿, 薛国程, 等. 工业有机废气热氧化技术研究进展[J]. 化工进展, 2017, 36(11): 4232-4242. |
WANG B, MA R, XUE G C, et al. Research progress on thermal oxidation technology for industrial organic waste gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4232-4242. | |
7 | 曹建军, 王俊, 张利勇, 等. 蓄热技术对可再生能源分布式能源系统的效益分析[J]. 储能科学与技术, 2021, 10(1): 385-392. |
CAO J J, WANG J, ZHANG L Y, et al. Benefit analysis of heat storage technology applied to distributed energy system with renewable energy[J]. Energy Storage Science and Technology, 2021, 10(1): 385-392. | |
8 | ZHENG H P, WANG C H, LIU Q M, et al. Thermal performance of copper foam/paraffin composite phase change material[J]. Energy Conversion and Management, 2018, 157: 372-381. |
9 | 万倩, 何露茜, 何正斌, 等. 泡沫铁/石蜡复合相变储能材料放热过程及其热量传递规律[J]. 储能科学与技术, 2020, 9(4): 1098-1104. |
WAN Q, HE L X, HE Z B, et al. Exothermic process and heat transfer of iron foam/paraffin composite phase change energy storage materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1098-1104. | |
10 | 徐众, 侯静, 万书权, 等. 金属泡沫/石蜡复合相变材料的制备及热性能研究[J]. 储能科学与技术, 2020, 9(1): 109-116. |
XU Z, HOU J, WAN S Q, et al. Preparation and thermal properties of metal foam/paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2020, 9(1): 109-116. | |
11 | 邹得球, 马先锋, 刘小诗, 等. 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(5): 1743-1754. |
ZOU D Q, MA X F, LIU X S, et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754. | |
12 | VINAYAKA RAM V, SINGHAL R, PARAMESHWARAN R. Energy efficient pumpable cement concrete with nanomaterials embedded PCM for passive cooling application in buildings[J]. Materials Today: Proceedings, 2020, 28: 1054-1063. |
13 | 刘丽辉, 莫雅菁, 孙小琴, 等. 纳米增强型复合相变材料的传热特性[J]. 储能科学与技术, 2020, 9(4): 1105-1112. |
LIU L H, MO Y J, SUN X Q, et al. Thermal behavior of the nanoenhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
14 | XIAO W, WANG X, ZHANG Y P. Analytical optimization of interior PCM for energy storage in a lightweight passive solar room[J]. Applied Energy, 2009, 86(10): 2013-2018. |
15 | AHANGARI M, MAEREFAT M. An innovative PCM system for thermal comfort improvement and energy demand reduction in building under different climate conditions[J]. Sustainable Cities and Society, 2019, 44: 120-129. |
16 | STATHOPOULOS N, MANKIBI M, ISSOGLIO R, et al. Air-PCM heat exchanger for peak load management: Experimental and simulation[J]. Solar Energy, 2016, 132: 453-466. |
17 | DRISSI S, LING T C, MO K H. Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity—A review[J]. Thermochimica Acta, 2019, 673: 198-210. |
18 | LU B H, ZHANG Y X, SUN D, et al. Experimental investigation on thermal properties of paraffin/expanded graphite composite material for low temperature thermal energy storage[J]. Renewable Energy, 2021, 178: 669-678. |
19 | KIM H S, KIM J H, KIM W Y, et al. Volume control of expanded graphite based on inductively coupled plasma and enhanced thermal conductivity of epoxy composite by formation of the filler network[J]. Carbon, 2017, 119: 40-46. |
20 | 中华人民共和国住房和城乡建设部. 公共建筑节能设计标准: GB50189—2019[S]. 北京: 中国建筑工业出版社, 2015. |
21 | 刘丽辉, 莫雅菁, 孙小琴, 等. 板式相变储能单元的蓄热特性及其优化[J]. 储能科学与技术, 2020, 9(6): 1784-1789. |
LIU L H, MO Y J, SUN X Q, et al. Thermal storage characteristics and optimization of plate-type phase change energy storage unit[J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789. |
[1] | ZHANG Ping, KANG Libin, WANG Mingju, ZHAO Guang, LUO Zhenhua, TANG Kun, LU Yaxiang, HU Yongsheng. Technology feasibility and economic analysis of Na-ion battery energy storage [J]. Energy Storage Science and Technology, 2022, 11(6): 1892-1901. |
[2] | Xinyu ZHOU, Daocheng LUAN, Zhihua HU, Junhua LING, Kelin WEN, Lang LIU, Zhiming YIN, Shuheng MI, Zhengyun WANG. Thermal storage performance of carbon-containing binary phase change heat storage materials [J]. Energy Storage Science and Technology, 2022, 11(4): 1175-1183. |
[3] | Dekun FU, Wenji SONG, Mingbiao CHEN, Ziping FENG. Techno-economic analysis of seasonal cold storage technology and its application in protected agriculture [J]. Energy Storage Science and Technology, 2021, 10(6): 2385-2391. |
[4] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[5] | Qihui YU, Li TIAN, Xiaofei LI, Xiaodong LI, Xin TAN, Yeming ZHANG. Compressed air energy storage capacity configuration and economic evaluation considering the uncertainty of wind energy [J]. Energy Storage Science and Technology, 2021, 10(5): 1614-1623. |
[6] | Lei HOU, Zichi WANG, Yingchao LI, Saihao WANG, Yajie ZHANG, Yusen ZHANG. Analysis and multi-objective optimization of CAES system [J]. Energy Storage Science and Technology, 2021, 10(1): 379-384. |
[7] | Lihui LIU, Yajing MO, Xiaoqin SUN, Jie LI. Thermal storage characteristics and optimization of plate-type phase change energy storage unit [J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789. |
[8] | ZHOU Huilin, QIU Yan. Heat storage characteristic and structure optimum inrectangular unit [J]. Energy Storage Science and Technology, 2020, 9(4): 1082-1090. |
[9] | LIU Lihui, MO Yajing, SUN Xiaoqin, LI Jie, LI Chuanchang, XIE Baoshan. Thermal behavior of the nanoenhanced phase change materials [J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. |
[10] | SUN Shoubin, YAO Hua, LIU Changpeng, HUANG Yun, MA Guangyu, ZHANG Tianfu, WANG Xiangfeng. Characteristics analysis of the phase change thermal storage equipment for medium and low temperature flue gas from steel industry [J]. Energy Storage Science and Technology, 2020, 9(3): 730-734. |
[11] | FAN Yongsheng, ZHAO Lulu, LIU Qinghua, LEMMON John, MIAO Ping. Economic analysis of flow battery energy storage for wind farm application [J]. Energy Storage Science and Technology, 2020, 9(3): 725-729. |
[12] | MA Meixiu, LI Zhendong, KANG Wei, ZENG Hongtao, SU Tieshan, HU Ronghui, HU Xiao. Numerical simulation and verification of high temperature phase change thermal storage electric heater [J]. Energy Storage Science and Technology, 2020, 9(1): 88-93. |
[13] | XING Zuoxia, ZHAO Haichuan, MA Shiping, DAI Junwen, LIU Yuting, SUN Zhenting. Study on key parameters design and economic evaluation of the electric heating and solid sensible heat thermal storage device [J]. Energy Storage Science and Technology, 2019, 8(6): 1211-1216. |
[14] | JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage [J]. Energy Storage Science and Technology, 2019, 8(3): 477-487. |
[15] | LI Jintian, MAO Jinfeng. Recent progress in salt hydrate sodium acetate based phase change materials for heat storage [J]. Energy Storage Science and Technology, 2018, 7(5): 881-887. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||