Energy Storage Science and Technology ›› 2019, Vol. 8 ›› Issue (3): 477-487.doi: 10.12028/j.issn.2095-4239.2019.0031
Previous Articles Next Articles
JIN Guang1, ZHAO Wenxiu1, ZHAO Jun2, GUO Shaopeng1,2
Received:
2019-03-11
Revised:
2019-03-25
Online:
2019-05-01
Published:
2019-05-01
CLC Number:
JIN Guang, ZHAO Wenxiu, ZHAO Jun, GUO Shaopeng. Development and research status on the technology of direct contact thermal energy storage[J]. Energy Storage Science and Technology, 2019, 8(3): 477-487.
[1] 林文珠, 曹嘉豪, 方晓明, 等. 管壳式换热器强化传热研究进展[J]. 化工进展, 2018, 37(4):1276-1286. LIN Wenzhu, CAO Jiahao, FANG Xiaoming, et al. Research progress on heat transfer enhancement of shell-and-tube heat exchangers[J]. Chemical Industry and Engineering Progress, 2018, 37(4):1276-1286. [2] 车海山, 陈迁乔, 钟秦, 等. 赤藓糖醇基相变复合纤维制备及热性能[J]. 储能科学与技术, 2017, 6(4):644-654. CHE Haishan, CHEN Qianqiao, ZHONG Qin, et al. Preparation and thermal properties of erythritol-based phase change composite fbers[J]. Energy Storage Science and Technology, 2017, 6(4):644-654. [3] 张正国, 王学泽, 方晓明. 石蜡/膨胀石墨复合相变材料的结构与热性能[J]. 华南理工大学学报(自然科学版), 2006, 34(3):1-5. ZHANG Zhengguo, WANG Xueze, FANG Xiaoming, et al. Structure and thermal properties of paraffn/expanded graphite composite phase change materials[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(3):1-5. [4] YAVARI F, FARD H R, PASHAYI K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. Phys. Chem. C, 2011, 115(17):8753-8758. [5] 张焕芝. 复合相变储能材料的自组装合成及性能研究[D]. 北京:北京化工大学, 2010. ZHANG Huanzhi. Self-assembly synthesis and properties of composite phase change energy storage materials[D]. Beijing:Beijing University of Chemical Technology, 2010. [6] 李贝, 刘道平, 杨亮. 复合相变蓄热材料研究进展[J]. 制冷学报, 2017(4):36-43. LI Bei, LIU Daoping, YANG Liang, et al. Research progress of composite phase change thermal storage materials[J]. Journal of Refrigeration, 2017(4):36-43. [7] CLAAR T, PETRI R. High-temperature direct-contact thermal energy storage using phase-change media[J]. Journal of Heat Recovery Systems, 1986, 6(1):doi:10.1016/0198-7593(86)90199-2. [8] FARID M, YACOUB K. Performance of direct contact latent heat storage unit[J]. Solar Energy, 1989, 43(4):237-251. [9] 赵栋. 直接式蓄热传热强化的实验以及模拟研究[D]. 天津:天津大学, 2016. ZHAO Dong. Experimental and simulation research on heat transfer enhancement of direct contact thermal energy storage[D]. Tianjin:Tianjin University, 2016. [10] WANG W, GUO S, LI H, et al. Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)[J]. Applied Energy, 2014, 119(C):181-189. [11] NOMURA T, TSUBOTA M, OYA T, et al. Heat storage in directcontact heat exchanger with phase change material[J]. Applied Thermal Engineering, 2013, 50(1):26-34. [12] GUO S, LI H, ZHAO J, et al. Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage[J]. Applied Energy, 2013, 112(16):1416-1423. [13] KAKIUCHI H, YAMAZAKI M, YABE M, et al. A study of erythritol as phase change material. In:IEA Annex 10-PCMs and chemical reactions for thermal energy storage[C]//Second workshop, Sofia, Bulgaria, 11-13 April, 1998. [14] DIARCE G, GANDARIAS I, CAMPOS-CELADOR A, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50-90℃ temperature range[J]. Solar Energy Materials and Solar Cells, 2015, 134:215-226. [15] GUO S P, ZHAO J, WANG W L, et al. Techno-economic assessment of mobilized thermal energy storage for distributed users:A case study in China[J]. Applied Energy, 2017, 194:481-486 [16] HÖHLEIN S, KÖNIGHAAGEN A, BRÜGGEMANN D. Thermophysical characterization of MgCl2·6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES)[J]. Materials, 2017, 10:doi:10.3390/ma10040444. [17] ZHANG H C, RINDT C C, SMEULDERS D M, et al. Nano-scale heat transfer in carbon nanotube-sugar alcohol composite as heat storage materials[J]. Phys. Chem. C, 2016:doi:10.1021/acs.jpcc.6b05466. [18] SHEN Shile, TAN Shujuan, WU Sai, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials[J]. Energy Conversion and Management, 2018, 157:41-48. [19] LEE S Y, SHIN H K, PARK M, et al. Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68:67-72. [20] SHENG Nan, DONG Kaixin, ZHU Chunyu, et al. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum fller[J]. Materials Chemistry and Physics, 2019, 229:89-91. [21] 郭启霖. 膨胀石墨/赤藓糖醇相变复合材料的制备与热性能研究[D]. 成都:电子科技大学, 2015. GUO Qilin. Preparation and thermal properties of expanded graphite/erythritol phase change composites[D]. Chengdu:University of Electronic Science and Technology, 2015. [22] ADACHI T, DAUDAH D, TANAKA G. Effects of supercooling degree and specimen size on supercooling duration of erythritol[J]. ISIJ International, 2014, 54(12):2790-2795. [23] PAUL A, SHI L, BIELAWSKI C W. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage[J]. Energy Conversion and Management, 2015, 103:139-146. [24] ZHANG H C, DUQUESNE M, GODIN A, et al. Experimental and in silico characterization of xylitol as seasonal heat storage material[J]. Fluid Phase Equilibr., 2016, 436:55-68. [25] SEPPÄLÄ A, MERILÄINEN A, WIKSTRÖM L, et al. The effect of additives on the speed of the crystallization front of xylitol with various degrees of supercooling[J]. Exp. Therm. Fluid Sci., 2010, 34:523-527. [26] KHOLMANOV I, KIM J, OU E, et al. Continuous carbon nanotubeultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS Nano, 2015, 9(12):116-199. [27] ZHANG T, ZHOU CY, ZHANG D. Research on the relaxation of supercooling of xylitol by graphene and ultrasonic irradiation[J]. Development and Application of Materials, 2010, 2:57-60. [28] ZENG J L, CHEN Y H, SHU L, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178:84-90. [29] PAUL A, SHI L, BIELAWSKI C W. A eutectic mixture of galactitol and mannitol as a phase change material for latent heat storage[J]. Energy Convers. Manage., 2015, 103:139-146. [30] ONA E P. Influence of ultrasonic irradiation on the solidification behavior of erythritol as a PCM[J]. Chem. Eng. Jpn., 2002, 35:290-298. [31] ONA E P. Relaxation of supercooling of erythritol for latent heat storage[J]. Chem. Eng. Jpn., 2001, 34:376-382. [32] SVEN K, TOBIAS T, PATRICK D, et al. Determination of heat transfer coefficients in direct contact latent heat storage systems[J]. Applied Thermal Engineering, 2018:doi:10.1016/j.applthermaleng.2018.09.015. [33] KAIZAWA A, MARUOKA N, KAWAI A, et al. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat Mass Transfer, 2007, 44:763-769. [34] NOMURA T, TSUBOTA M, OYA T, et al. Heat release performance of direct-contact heat exchanger with erythritol as phase change material[J]. Applied Thermal Engineering, 2013, 61:28-35. [35] NOMURA T, TSUBOTA M, SAGARA A, et al. Performance analysis of heat storage of direct-contact heat exchange with phase-change material[J]. Applied Thermal Engineering, 2013, 58:108-113. [36] 郭少朋. 移动式余热利用系统蓄热器实验和模拟研究及经济性分析[D]. 天津:天津大学, 2013. GUO Shaopeng. Experimental and simulation study and economic analysis of regenerator in mobilized waste heat utilization systemExperimental and simulation study and economic analysis of regenerator in mobilized waste heat utilization system[D]. Tianjing:Tianjin University, 2013. [37] NAING T T, HORIBE A, HARUKI N, et al. Melting and solidifcation heat transfer characteristics of a phase-change material in a latent heat storage vessel:effects of a perforated partition plate and metal fber[J]. International Journal of Heat & Mass Transfer, 2015, 82(82):259-266. [38] GAO L, ZHAO J, AN Q, et al. Experiments on thermal performance of erythritol/expanded graphite in a direct contact thermal energy storage container[J]. Applied Thermal Engineering, 2016, 113:858-866. [39] ZHANG H, DUQUESNE M, GODIN A, et al. Experimental and in silico characterization of xylitol as seasonal heat storage material[J]. Fluid Phase Equilibria, 2017, 436:55-68. [40] 高学农,胡小冬,陈思婷,等. 五水硫代硫酸钠相变蓄热材料的制备[J]. 华南理工大学学报(自然科学版), 2014, 42(2):8-13. GAO Xuenong, HU Xiaodong, CHEN Siting, et al. Preparation of phase change thermal storage material of sodium thiosulfate pentahydrate[J]. Journal of South China University of Technology(Natural Science Edition), 2014, 42(2):8-13. [41] DANNEMAND M, SCHULTZ J M, JOHANSEN J B, et al. Long term thermal energy storage with stable supercooled sodium acetate trihydrate[J]. Applied Thermal Engineering, 2015, 91:671-678. [42] CABEZA LF, SVENSSON G, HIEBLER S, et al. Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material[J]. Applied Thermal Engineering, 2003, 23:1697-1704. [43] HU P, LU D J, FAN X Y, Zhou X, et al. Phase change performance of sodium trihydrate with AlN nanoparticles and CMC[J]. Solar Energy Materials & Solar Cells, 2011, 95(9):2645-2649. [44] 王智平, 郭长华, 王克振, 等. 相变材料三水醋酸钠储热性能实验研究[J]. 化学工程, 2011, 39(5):27-30. WANG Zhiping, GUO Changhua, WANG Kezhen, et al. Experimental study on heat storage performance of phase change material sodium acetate trihydrate[J]. Chemical Engineering, 2011, 39(5):27-30. [45] CUI W, YUAN Y, SUN L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99(11):1029-1037. [46] 卢竼漪, 侯峰, 徐贵钰. 碳纳米管-无机盐复合成核剂对MgCl2·6H2O-CaCl2·6H2O体系储热性能的影响[J]. 稀有金属材料与工程, 2018, 47(S1):277-281. LU Pengyi, HOU Feng, XU Guiyu, et al. Effect of carbon nanotubeinorganic salt composite nucleating agent on heat storage performance of MgCl2·6H2O-CaCl2·6H2O system[J]. Rare Metal Materials and Engineering, 2018, 47(S1):277-281. [47] LI G, ZHANG B B, LI X, et al. The preparation, characterization and modifcation of a new phase change material:CaCl2·6H2O-MgCl2·6H2O eutectic hydrate salt[J]. Sol. Energy Mater. Sol. C, 2014, 126:51-55. [48] FARID M M, KHALAF A N. Performance of direct contact latent heat storage units with two hydrated salts[J]. Solar Energy, 1994, 52(2):179-189. [49] MULYONO P. Direct contact thermal energy storage system using Na2CO3·10H2O solution[J]. Energy, 2004, 29(12):2573-2583. [50] KARTHIK M, FAIK A, BLANCO-RODRÍGUEZ P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94:266-276. [51] KAIZAWA A, MARUOKA N, KAWAI A, et al. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system[J]. Heat Mass Transfer, 2007, 44:763-769. [52] WANG W, LI H, GUO S, et al. Numerical simulation study on discharging process of the direct-contact phase change energy storage system[J]. Applied Energy, 2015, 150:61-68. [53] GUO S, ZHAO J, WANG W, et al. Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container[J]. Applied Thermal Engineering, 2015, 78:556-564. [54] 高维, 赵军, 赵栋. 直接接触式/间接接触式加肋蓄热器性能比较研究[J]. 太阳能学报, 2016, 37(5):1242-1247. GAO Wei, ZHAO Jun, ZHAO Dong. Comparative study on performance of direct contact/indirect contact ribbed heat accumulator[J]. Acta Energiae Solaris Sinica, 2016, 37(5):1242-1247. [55] KIATSIRIROAT T, TIANSUWAN J, SUPAROS T, et al. Performance analysis of a direct-contact thermal energy storage-solidification[J]. Renewable Energy, 2000, 20(2):195-206. [56] WANG W L, HE S Q, GUO S P, et al. A combined experimental and simulation study on charging process of erythritol-HTO directblending based energy storage system[J]. Energy Convers. Manage., 2014, 83:306-313. [57] GUO S, LIU Q, ZHAO J, et al. Mobilized thermal energy storage:Materials, containers and economic evaluation[J]. Energy Conversion and Management, 2018, 177:315-329. [58] WANG Y J. Handbook of clean energy systems:Mobilized thermal energy storage (M-TES) technology for industry heat recovery[M]. USA:John Wiley & Sons, Ltd, 2015. [59] NOMURA T, OKINAKA N, AKIYAMA T. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant[J]. Resources Conservation & Recycling, 2010, 54(11):1000-1006. |
[1] | Wenlan YE, Ming ZHAO, Mingyu HU, Yang TIAN. Analysis of heat storage and release performance of tube bundle phase change heat accumulator [J]. Energy Storage Science and Technology, 2022, 11(7): 2151-2160. |
[2] | Jianlin LI, Zedong ZHANG, Yaxin LI, Yi ZHOU, Yunli YUE. Research on key technologies of mobile energy storage system under the target of carbon neutrality [J]. Energy Storage Science and Technology, 2022, 11(5): 1523-1536. |
[3] | Mingchang HU, Xueqing ZHOU, Jinjun CHEN, Xueyan HUANG, Wei CHEN, Jianjun XUE. Developing high-capacity prismatic zinc-air batteries with tri-electrode configuration [J]. Energy Storage Science and Technology, 2022, 11(2): 434-441. |
[4] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[5] | Tianyi MA, Weizhe WANG, Chunjing LIN, Guangli BAI, Zhen WEI, Shiqiang LIU. Feasibility of the multistage reuse of commercial LiFePO4/C batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 119-126. |
[6] | Mingchang HU, Xueqing ZHOU, Xueyan HUANG, Jianjun XUE. Solvent-free fabrication of zinc-air electrodes and their battery performance [J]. Energy Storage Science and Technology, 2021, 10(6): 2090-2096. |
[7] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
[8] | Xiaoyuan WU, Zhelun ZUO, Shiyu GUO, Ru WANG, Jianhui HE. Evaluation on city application readiness of fuel cell logistics vehicles [J]. Energy Storage Science and Technology, 2020, 9(5): 1574-1584. |
[9] | TU Weichao, LI Wenyan, ZHANG Qiang, Jia'ao WANG. Engineering application of flywheel energy storage in power system [J]. Energy Storage Science and Technology, 2020, 9(3): 869-877. |
[10] | LIU Shiqiang, WANG Fang, MA Tianyi, LIN Chunjing, BAI Guangli, WEI Zhen, CHEN Liduo. Cycle life test and analysis of lithium iron phosphate based traction batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 638-644. |
[11] | YI Bin, ZHAO Wei, ZHANG Kejie, LI Aikui, LIANG Chonggan, LUO Min. Application of lithium battery energy storage in low-voltage distributed network [J]. Energy Storage Science and Technology, 2019, 8(4): 671-677. |
[12] | HUA Liang. The patent road of power battery unicorn——Analysis of CATL patent application and layout [J]. Energy Storage Science and Technology, 2019, 8(2): 415-418. |
[13] | LIU Peng, GU Xiaobin, QIN Shan. State-of-the-art development of numerical simulations of phase change materials based systems [J]. Energy Storage Science and Technology, 2018, 7(2): 221-231. |
[14] | LI Jianlin, JIN Wentao, XU Shaohua, WEI Da. Analysis of access mode and control strategy of distributed energy storage system on user side [J]. Energy Storage Science and Technology, 2018, 7(1): 80-. |
[15] | CHEN Xuedan1, CHEN Shuoyi2, QIAO Zhijun1, FU Guansheng1, RUAN Dianbo1. Applications of supercapacitors [J]. Energy Storage Science and Technology, 2016, 5(6): 800-806. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||