Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (4): 1091-1097.doi: 10.19799/j.cnki.2095-4239.2020.0020
• Energy Storage Materials and Devices • Previous Articles Next Articles
ZHANG"Chunyu(), GUO"Hang(), WU"Yuting, ZHANG"Cancan, YE"Fang, MA"Chongfang
Received:
2020-01-07
Revised:
2020-01-19
Online:
2020-07-05
Published:
2020-06-30
Contact:
Hang GUO
E-mail:zhangchunyu2017@emails.bjut.edu.cn;hangguo@bjut.edu.cn
CLC Number:
ZHANG Chunyu, GUO Hang, WU Yuting, ZHANG Cancan, YE Fang, MA Chongfang. Forced convection heat transfer characteristics in a circular tube with low-melting-point quaternary nitrate[J]. Energy Storage Science and Technology, 2020, 9(4): 1091-1097.
Table 1
Basic physical properties of low melting point quaternary salt[17]"
名称 | 单位 | 拟合公式 | 适用范围 |
---|---|---|---|
比热容cp,s | J·(g·K)-1 | cp,s=1.77878-7.55155×10-4t | 220 ℃≤t≤450 ℃ |
导热系数λs | W·(m·K)-1 | λs=3.83349-0.02857t+8.07852×8.07852×10-5t2-7.24056×10-8t3 | 250 ℃≤t≤500 ℃ |
黏度ηs | Pa·s | ηs=0.44845e(621.738/t) ×10-3 | 220 ℃≤t≤450 ℃ |
密度ρs | kg·m-3 | ρs=2.22744-9.43393×10-4t | 220 ℃≤t≤450 ℃ |
1 | SERRANO-LOPEZ R, FRADERA J, CUESTA-LOPEZ S. Molten salts database for energy applications[J]. Chemical Engineering and Processing: Process Intensification, 2013, 73: 87-102. |
2 | 吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6) : 586-592. |
WU Yuting, REN Nan, MA Chongfang. Research and application of molten salts for sensible heat storage[J]. Energy Storage Science and Technology, 2013, 2(6): 586-592. | |
3 | HERRMANN U, KEARNEY D W. Survey of thermal energy storage for parabolic trough power plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 145-152. |
4 | DROUOT L P, HILLAIRET M J. The themis program and the 2500-kW themis solar power station at targasonne[J]. Journal of Solar Energy Engineering, 1984, 106(1): 83-89. |
5 | SATOH T, YUKI K, CHIBA S, et al. Heat transfer performance for high Prandtl and high temperature molten salt flow in sphere-packed pipes[J]. Fusion Science and Technology, 2007, 52(3): 618-624. |
6 | 叶猛, 刘斌, 吴玉庭, 等. 熔融盐(LiNO3)强制对流换热实验[J]. 工程热物理学报, 2008, 29(9): 1585-1587. |
YE Meng, LIU Bin, WU Yuting, et al. An experimental investigation of heat transfer during forced convection in molten salt (LiNO3)[J]. Journal of Engineering Thermophysics, 2008, 29(9): 1585-1587. | |
7 | LU J, HE S, LIANG J, et al. Convective heat transfer in the laminar-turbulent transition region of molten salt in annular passage[J]. Experimental Thermal and Fluid Science, 2013, 51: 71-76. |
8 | LU J, SHENG X, DING J, et al. Transition and turbulent convective heat transfer of molten salt in spirally grooved tube[J]. Experimental Thermal and Fluid Science, 2013, 47: 180-185. |
9 | LU J, HE S, DING J, et al. Convective heat transfer of high temperature molten salt in a vertical annular duct with cooled wall[J]. Applied Thermal Engineering, 2014, 73(2): 1519-1524. |
10 | XIAO P, GUO L, ZHANG X. Investigations on heat transfer characteristic of molten salt flow in helical annular duct[J]. Applied Thermal Engineering, 2015, 88: 22-32. |
11 | QIAN J, KONG Q, ZHANG H, et al. Performance of a gas cooled molten salt heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1429-1435. |
12 | HE Y L, ZHENG Z J, DU B C, et al. Experimental investigation on turbulent heat transfer characteristics of molten salt in a shell-and-tube heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1206-1213. |
13 | DONG X, BI Q, YAO F. Experimental investigation on the heat transfer performance of molten salt flowing in an annular tube[J]. Experimental Thermal and Fluid Science, 2019, 102: 113-122. |
14 | 刘闪威, 吴玉庭, 崔武军, 等. 低熔点熔盐圆管内强迫对流换热[J]. 化工学报, 2015, 66(2): 530-536. |
LIU Shanwei, WU Yuting,CUI Wujun, et al. Forced convection heat transfer with low-melting point molten salt in circular pipe[J]. Journal of Chemical Industry and Engineering, 2015, 66(2):530-536. | |
15 | ROCIO RODRIGUEZ-LAGUNA M DEL, GOMEZ-ROMERO P, TORRES C M S, et al. Development of low-melting point molten salts and detection of solid-to-liquid transitions by alternative techniques to DSC[J]. Solar Energy Materials and Solar Cells, 2019, 202, doi: 10.1016/j.solmat.2019.110107. |
16 | VILLADA C, JARAMILLO F, CASTANO J G, et al. Design and development of nitrate-nitrite based molten salts for concentrating solar power applications[J]. Solar Energy, 2019, 188: 291-299. |
17 | ZOU L, CHEN X, WU Y, et al. Experimental study of thermophysical properties and thermal stability of quaternary nitrate molten salts for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 190: 12-19. |
18 | 陈虎. 熔盐及熔盐纳米流体管内受迫对流的实验研究[D]. 北京: 北京工业大学, 2019. |
CHEN Hu. Experimental study on forced convection in tube with molten salt and molten salt-based nanofluids[D]. Beijing: Beijing University of Technology, 2019. | |
19 | HOFFMAN H W, COHEN S I. Fused salt heat transfer (Ⅲ): Forced convection heat transfer in circular tubes containing the salt mixture NaNO2-NaNO3-KNO3[R]. Oak Ridge: National Laboratory, 1960. |
20 | 刘斌. 熔融盐圆管内强迫对流换热的实验研究[D]. 北京: 北京工业大学, 2009. |
LIU Bin. Experimental study for forced convection heat transfer with molten salt in a circular tube[D]. Beijing: Beijing University of Technology, 2009. | |
21 | 胡青松. 混合硝酸盐圆管内强迫对流换热及混合碳酸盐腐蚀性研究[D]. 北京: 北京工业大学, 2010. |
HU Qingsong. Study on forced convection heat transfer and corrosion of mixed carbonate in a circular tube of mixed nitrate[D]. Beijing: Beijing University of Technology, 2010. | |
22 | BERNARDO E, EIAN C S. Heat-transfer tests of aqueous ethylene glycol solutions in an electrically heated tube[R]. Cleveland: Aircraft Engine Research Lab, 1945. |
23 | DREXEL R E, MCADAMS W H. Heat-transfer coefficients for air flowing in round tubes, in rectangular ducts, and around finned cylinders[R]. Cambridge: Massachusetts Inst of Tech Cambridge, 1945. |
24 | DIPPREY D F. An experimental investigation of heat and momentum transfer in smooth and rough tubes at various Prandtl numbers[D]. Pasadena: California Institute of Technology, 1961. |
[1] | Baocun DU, Lijuan HUANG, Yonggang LEI, Chongfang SONG, Fei WANG. Dynamic study on the thermal and stress performances of the molten salt packed-bed thermal storage tank [J]. Energy Storage Science and Technology, 2022, 11(7): 2141-2150. |
[2] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[3] | WU Xiaoling, ZHOU Tao, LIU Yuzhao, DU Yanping, CHEN Huiping, LI Shun. Numerical study on cooling enhancement of micro devices by designing turbulence based hollow micro pin-fin arrays with lateral holes [J]. Energy Storage Science and Technology, 2022, 11(6): 1980-1987. |
[4] | Yunqi GUO, Nan SHENG, Chunyu ZHU, Zhonghao RAO. Preparation of Al2O3 fibers using a template method, and the investigation of the thermal properties of paraffin phase-change composite [J]. Energy Storage Science and Technology, 2022, 11(2): 511-520. |
[5] | Qingmeng WANG, Zhi LIU, Xiaomin CHENG, Qianju CHENG, Zean LYU. Effect of In on high-temperature corrosion properties of Sn-Bi-Zn heat transfer and heat storage alloy [J]. Energy Storage Science and Technology, 2022, 11(1): 9-18. |
[6] | Xiang WANG, Jing XU, Xinwen CHEN, Yajun DING, Xin XU. Refined thermodynamic simulation of lithium battery based on VCHTC [J]. Energy Storage Science and Technology, 2022, 11(1): 246-252. |
[7] | Hongzhang ZHU, Chuanping WU, Tiannian ZHOU, Jie DENG. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating [J]. Energy Storage Science and Technology, 2022, 11(1): 201-210. |
[8] | Guoliang XU, Yujie ZHANG, Xiaoming HUANG, Rui HE. Thermal design and operation strategy of automotive lithium battery based on critical heat transfer coefficient and intervention time [J]. Energy Storage Science and Technology, 2021, 10(6): 2252-2259. |
[9] | Wei WU, Shoucheng LI, Weian XIE. Experimental study on the influence of fin parameters on heat transfer of PCM based radiator [J]. Energy Storage Science and Technology, 2021, 10(6): 2303-2311. |
[10] | Cong HE, Yuanwei LU, Wenbing SONG, Xiaotong CHEN, Yuting WU, Zhansheng FAN. The phase diagram prediction and experimental study of ternary same cation systems [J]. Energy Storage Science and Technology, 2021, 10(5): 1729-1734. |
[11] | Xiaotong CHEN, Yuanwei LU, Cong HE, Wenbing SONG, Yuting WU, Guichun YANG. Heat-release stability of single tank molten salt heat storage system based on continuous regulation of heat exchange area [J]. Energy Storage Science and Technology, 2021, 10(5): 1753-1759. |
[12] | Hui WANG, Jun LI, Peiwang ZHU, Jian WANG, Chunlin ZHANG. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant [J]. Energy Storage Science and Technology, 2021, 10(5): 1760-1767. |
[13] | Yaxuan XIONG, Hui ZHANG, Yuting WU, Yulong DING. Effect of nanoparticles on surface tension and density of binary nitrate [J]. Energy Storage Science and Technology, 2021, 10(4): 1297-1304. |
[14] | Yuting WU, Subudao MING, Cancan ZHANG, Yuanwei LU. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts [J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296. |
[15] | Xinmei LUO, Jia'an GU. Numerical analysis of fractal fins with different aspect ratios to enhance phase change material melting heat transfer [J]. Energy Storage Science and Technology, 2021, 10(2): 523-533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||