1 |
A∙И∙别略耶夫, E∙A∙热姆邱仁娜, Л∙A∙费尔散诺娃. 熔盐物理化学[M]. 胡方华 译. 北京: 中国工业出版社, 1963.
|
|
BIELVEYEFU А И, REMUQIURENNA E A, FERSANOVAЛ A. Molten salt physical chemistry[M]. HU F H trans. Beijing: China Industrial Press, 1963.
|
2 |
LI X, WANG Y, WU S, et al. Preparation and investigation of multicomponent alkali nitrate/nitrite salts for low temperature thermal energy storage[J]. Energy, 2018, 160: 1021-1029.
|
3 |
WU Y Z, LI J I, WANG M, et al. Solar salt doped by MWCNTs as a promising high thermal conductivity material for CSP[J]. RSC Advances, 2018, 834: 19251-19260.
|
4 |
ZOU L I, CHEN X, WU Y T, et al. Experimental study of thermophysical properties and thermal stability of quaternary nitrate molten salts for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 190: 12-19.
|
5 |
XIONG Y X, SHI J F, WU Y T, et al. Preparation and investigation on density and surface tension of quaternary bromides for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2016, 157: 709-715.
|
6 |
HONG X G, LU K Q, ZHAO Y Q, et al. Density and surface tension properties of molten potassium niobate system[J]. Journal of Crystal Growth, 1995, 147: 104-110.
|
7 |
KUBÍKOVÁ B, ŠIMURDA M, ROBERT M, et al. Surface tension, electrical conductivity and viscosity of the LiCl-NaCl-ZnCl2 molten system[J]. Journal of Molecular Liquids, 2016, 224: 672-676.
|
8 |
CHIERUZZI M, CERRITELLI G F, MILIOZZI A, et al. Heat capacity of nanofluids for solar energy storage produced by dispersing oxide nanoparticles in nitrate salt mixture directly at high temperature[J]. Solar Energy Materials and Solar Cells, 2017, 167: 60-69.
|
9 |
史建峰, 熊亚选, 吴玉庭, 等. 四元溴化盐熔体表面张力特性[J]. 化工学报, 2015, 66(10): 3820-3825.
|
|
SHI J F, XIONG Y X, WU Y T, et al. Surface tension of quaternary bromide salts[J]. CIESC Journal, 2015, 66(10): 3820-3825.
|
10 |
熊亚选, 王振宇, 徐鹏, 等. 添加纳米SiO2对单组分及二元硝酸盐热物性的影响[J]. 化工学报, 2018, 69(10): 4418-4426.
|
|
XIONG Y X, WANG Z Y, XU P, et al. Enhancing thermal properties of mono and binary nitrates by adding SiO2 nanoparticles[J]. CIESC Journal, 2018, 69(10): 4418-4426.
|
11 |
SHEIKHOLESLAMI M, ROKNI H B. Simulation of nanofluid heat transfer in presence of magnetic field: A review[J]. International Journal of Heat and Mass Transfer, 2017, 115: 1203-1233.
|
12 |
XIONG Y X, WANG Z Y, WU Y T, et al. Performance enhancement of bromide salt by nano-particles dispersion for high-temperature heat pipes in concentrated solar power plants[J]. Applied Energy, 2019, 237: 171-179.
|
13 |
ZHANG P, CHENG J H, JIN Y, et al. Evaluation of thermal physical properties of molten nitrate salts with low melting temperature[J]. Solar Energy Materials and Solar Cells, 2018, 176: 36-41.
|
14 |
VILLADA C, BONK A, BAUER T, et al. High-temperature stability of nitrate/nitrite molten salt mixtures under different atmospheres[J]. Applied Energy, 2018, 226: 107-115.
|
15 |
RIZVI S M M, SHIN D. Mechanism of heat capacity enhancement in molten salt nanofluids[J]. International Journal of Heat and Mass Transfer, 2020, 161: doi: 10.1006/j.ijheatmasstransfer. 2020.120260.
|
16 |
SHIN D BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): doi: 10.1115/1.4002600.
|
17 |
THOMS M W. Adsorption at the nanoparticle interface for increased thermal capacity in solar thermal systems[D]. Massachusetts: Massachusetts Institute of Technology, 2012.
|