Energy Storage Science and Technology ›› 2022, Vol. 11 ›› Issue (3): 921-928.doi: 10.19799/j.cnki.2095-4239.2022.0046
Previous Articles Next Articles
Peiping YU(), Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU(), Tao CHENG()
Received:
2022-01-25
Revised:
2022-02-14
Online:
2022-03-05
Published:
2022-03-11
Contact:
Yue LIU,Tao CHENG
E-mail:ppyu@stu.suda.edu.cn;yliu1992@suda.edu.cn;tcheng@suda.edu.cn
CLC Number:
Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase[J]. Energy Storage Science and Technology, 2022, 11(3): 921-928.
1 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
2 | TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.114. |
3 | XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environmetal Science, 2014, 7(2): 513-537. |
4 | CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151. |
5 | 刘凡凡, 张志文, 叶淑芬, 等. 锂金属负极的挑战与改善策略研究进展[J]. 物理化学学报, 2021, 37(1): 19-44. |
LIU F F, ZHANG Z W, YE S F, et al. Challenges and improvement strategies progress of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 19-44. | |
6 | ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. Journal of Materials Chemistry A, 2015, 3(13): 6709-6732. |
7 | WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): doi: 10.1002/aenm.202003092. |
8 | HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333. |
9 | 吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 36-52. |
WU C, ZHOU Y, ZHU X L, et al. Research progress on high concentration electrolytes for Li metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 36-52. | |
10 | XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015. |
11 | WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/s41524-018-0064-0. |
12 | SUO L M, OH D, LIN Y X, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680. |
13 | WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift Für Physikalische Chemie, 2009, 223(10/11): 1395-1406. |
14 | PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051. |
15 | AURBACH D, EIN-ELY Y, ZABAN A. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. Journal of the Electrochemical Society, 1994, 141(1): L1-L3. |
16 | PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210. |
17 | XU Y B, WU H P, HE Y, et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy[J]. Nano Letters, 2020, 20(1): 418-425. |
18 | BOUCHET R. A stable lithium metal interface[J]. Nature Nanotechnology, 2014, 9(8): 572-573. |
19 | LI S, JIANG M W, XIE Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: Challenges and progress[J]. Advanced Materials, 2018, 30(17): doi: 10.1002/adma.201706375. |
20 | WANG Y, NAKAMURA S, TASAKI K, et al. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive?[J]. Journal of the American Chemical Society, 2002, 124(16): 4408-4421. |
21 | BEDROV D, SMITH G D, VAN DUIN A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: A molecular dynamics simulation study using the ReaxFF[J]. The Journal of Physical Chemistry A, 2012, 116(11): 2978-2985. |
22 | SODEYAMA K, YAMADA Y, AIKAWA K, et al. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte[J]. The Journal of Physical Chemistry C, 2014, 118(26): 14091-14097. |
23 | MA Y G, BALBUENA P B. DFT study of reduction mechanisms of ethylene carbonate and fluoroethylene carbonate on Li+-adsorbed Si clusters[J]. Journal of the Electrochemical Society, 2014, 161(8): E3097-E3109. |
24 | LEUNG K, TENNEY C M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24224-24235. |
25 | MORADABADI A, BAKHTIARI M, KAGHAZCHI P. Effect of anode composition on solid electrolyte interphase formation[J]. Electrochimica Acta, 2016, 213: 8-13. |
26 | SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487. |
27 | LEUNG K, QI Y, ZAVADIL K R, et al. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: First-principles modeling and experimental studies[J]. Journal of the American Chemical Society, 2011, 133(37): 14741-14754. |
28 | WANG Y W, ZHANG W Q, CHEN L D, et al. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations[J]. Science and Technology of Advanced Materials, 2017, 18(1): 134-146. |
29 | BORODIN O, OLGUIN M, SPEAR C E, et al. Towards high throughput screening of electrochemical stability of battery electrolytes[J]. Nanotechnology, 2015, 26(35): doi: 10.1088/0957-4484/26/35/354003. |
30 | HE Q, YU B, LI Z H, et al. Density functional theory for battery materials[J]. Energy & Environmental Materials, 2019, 2(4): 264-279. |
31 | TASAKI K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2920-2933. |
32 | TASAKI K, KANDA K, KOBAYASHI T, et al. Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes[J]. Journal of the Electrochemical Society, 2006, 153(12): doi: 10.1149/1.2354460. |
33 | WANG Y X, BALBUENA P B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density functional theory studies[J]. The Journal of Physical Chemistry B, 2002, 106(17): 4486-4495. |
34 | WANG Y X, NAKAMURA S, TASAKI K, et al. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive?[J]. Journal of the American Chemical Society, 2002, 124(16): 4408-4421. |
35 | CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. |
36 | LEUNG A K K, HAFEZ I M, BAOUKINA S, et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2012, 116(34): 18440-18450. |
37 | USHIROGATA K, SODEYAMA K, OKUNO Y, et al. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery[J]. Journal of the American Chemical Society, 2013, 135(32): 11967-11974. |
38 | OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: An ab initio study[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(12): 8643-8653. |
39 | DUIN A C, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409. |
40 | SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. npj Computational Materials, 2016, 2: doi: 10.1038/npjcompumats.2015.11. |
41 | KIM S P, DUIN A C, SHENOY V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597. |
42 | CAMACHO-FORERO L E, SMITH T W, BERTOLINI S, et al. Reactivity at the lithium-metal anode surface of lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2015, 119(48):26828-26839. |
43 | BERTOLINI S, BALBUENA P B. Buildup of the solid electrolyte interphase on lithium-metal anodes: reactive molecular dynamics study[J]. The Journal of Physical Chemistry C, 2018, 122(20):10783-10791. |
44 | YUN K S, PAI S J, YEO B C, et al. Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: ReaxFF reactive force field[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2812-2818. |
45 | BEDROV D, BORODIN O, HOOPER J B. Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): Insight from atomistic molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(30): 16098-16109. |
46 | BORODIN O, ZHUANG G V, ROSS P N, et al. Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7433-7444. |
47 | UNKE O T, CHMIELA S, SAUCEDA H E, et al. Machine learning force fields[J]. Chemical Reviews, 2021, 121(16): 10142-10186. |
48 | BEHLER J. Four generations of high-dimensional neural network potentials[J]. Chemical Reviews, 2021, 121(16): 10037-10072. |
49 | DERINGER V L, BARTÓK A P, BERNSTEIN N, et al. Gaussian process regression for materials and molecules[J]. Chemical Reviews, 2021, 121(16): 10073-10141. |
50 | BEDROV D, PIQUEMAL J P, BORODIN O, et al. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields[J]. Chemical Reviews, 2019, 119(13): 7940-7995. |
51 | BARTÓK A P, KONDOR R, CSÁNYI G. On representing chemical environments[J]. Physical Review B, 2013, 87(18): doi: 10.1103/PhysRevB.87.184115. |
52 | CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Advanced Electronic Materials, 2016, 2(2): doi: 10.1002/aelm.201500246. |
53 | LU Y, TU Z, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10): 961-969. |
54 | WOOD S M, PHAM C H, RODRIGUEZ R, et al. K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase[J]. ACS Energy Letters, 2016, 1(2): 414-419. |
55 | DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. |
56 | LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms8436. |
57 | ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.201605989. |
58 | QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7362. |
59 | SUO L M, XUE W J, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1156-1161. |
60 | ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681. |
61 | JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746. |
[1] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[2] | Jinping LIU, Bowei PU, Zheyi ZOU, Mingqing LI, Yuqing DING, Yuan REN, Yaqiao LUO, Jie LI, Yajie LI, Da WANG, Bing HE, Siqi SHI. Investigating thermodynamic and kinetic properties of ionic conductors via Monte Carlo simulation [J]. Energy Storage Science and Technology, 2022, 11(3): 878-896. |
[3] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[4] | Jundong DUAN, Gaoshang LI, Yishi LI, Ziheng FU, Hongye HUANG. Coordinated charging control for EV charging stations considering wind power accommodation [J]. Energy Storage Science and Technology, 2021, 10(2): 630-637. |
[5] | YAO Qingcheng, YUAN Xiaoling. Optimal configuration of independent microgrid based on Monte Carlo processing of source and load uncertainty [J]. Energy Storage Science and Technology, 2020, 9(1): 186-194. |
[6] | NI Haiou, SUN Ze, LU Guimin, YU Jianguo. Molecular dynamics simulation of structure and physical properties of NaNO3-KNO3-NaNO2 ternary phase-change molten salts [J]. Energy Storage Science and Technology, 2017, 6(4): 669-674. |
[7] | HUANG Jie, LING Shigang, WANG Xuelong, JIANG Liwei, HU Yongsheng, XIAO Ruijuan, LI Hong. Fundamental scientific aspects of lithium ion batteries(ⅩⅣ)—Calculation methods [J]. Energy Storage Science and Technology, 2015, 4(2): 215-230. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||