Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (2): 215-230.doi: 10.3969/j.issn.2095-4239.2015.02.014
• Expert lectures • Previous Articles Next Articles
HUANG Jie, LING Shigang, WANG Xuelong, JIANG Liwei, HU Yongsheng, XIAO Ruijuan, LI Hong
Received:
2015-01-26
Online:
2015-04-19
Published:
2015-04-19
CLC Number:
HUANG Jie, LING Shigang, WANG Xuelong, JIANG Liwei, HU Yongsheng, XIAO Ruijuan, LI Hong. Fundamental scientific aspects of lithium ion batteries(ⅩⅣ)—Calculation methods[J]. Energy Storage Science and Technology, 2015, 4(2): 215-230.
[1] Jian Zengyun(坚增运),Liu Cuixia(刘翠霞),Lv Zhigang(吕志刚). Computational Materials Science(计算材料学)[M]. Beijing:Chemical Industry Press,2012. [2] Hafner J,Wolverton C,Ceder G. Toward computational materials design:The impact of density functional theory on materials research[J]. Mater. Res. Soc. Bull. ,2006,31(9):659-667. [3] Wang C Y,Zhang X. Multiscale modeling and related hybrid approaches[J]. Current Opinion in Solid State & Materials Science ,2006,10(1):2-14. [4] Meng Y S,Dompablo M E. Frist principles computational materials design for energy storage materials in lithium ion batteries[J]. Energ. Environ. Sci. ,2009,2(6):589-609. [5] Car R,Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Phys. Rev. Lett. ,1985,55(22):2471-2474. [6] Kohn W. Nobel lecture:Electronic structure of matter—Wave functions and density functionals[J]. Rev. Mod. Phys. ,1999,71(5):1253-1266. [7] Shi Siqi(施思齐). 锂离子电池正极材料的第一性原理研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2004. [8] Born M,Huang K. Dynamical Theory of Crystal Lattices[M]. Oxford:Oxford Universities Press,1954. [9] Thomas L H. The calculation of atomic fields[J]. Proc. Cambridge Phil. Soc. ,1927,23(5):542-548. [10] Fermi E. Un metodo statistico per la Determinazione di alcune prioprietà dell'Atomo[J]. Rend. Accad. Naz. Lincei ,1927,6:602-607. [11] Hohenberg P,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev. ,1964,136(3B):864-871. [12] Kohn W,Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev. ,1965,140(4A):1133-1138. [13] Slater J C. A simplification of the Hartree-Fock method[J]. Phys. Rev. ,1951,81(3):385-390. [14] Ceperley D M,Alder B J. Ground-state of the electron-gas by a stochastic method[J]. Phys. Rev. Lett. ,1980,45(7):566-569. [15] Perdew J P,Zunger A. Self-interaction corrction to density-functional appoximations for many-electron systems[J]. Phys. Rev. B ,1981,23(10):5048-5079. [16] Jones R O,Gunnarsson O. The density functional formalism, its application and prospects[J]. Rev. Mod. Phys. ,1989,61(3):689-746. [17] Langreth D C,Perdew J P. Theory of nonuniform electronic systems.1.analysis of the gradient approximation and a generalization that works[J]. Phys. Rev. B ,1980,21(12):5469-5493. [18] Becke A D. Density-functional exchange-energy approximation with correct asymptotic-behavior[J]. Phys. Rev. A ,1988,38(6):3098-3100. [19] Perdew J P,Chevary J A,Vosko S H, et al . Atoms,molecules,solids,and surfaces—Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B ,1992,46(11):6671-6687. [20] Perdew J P,Wang Y. Accurate and simple analytic representation of the electron-gas correlation-energy[J]. Phys. Rev. B ,1992,45(23):13244-13249. [21] Perdew J P,Burke K,Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett. ,1996,77(18):3865-3868. [22] Tao J,Perdew J P. Climbing the density functional ladder:Nonempirical meta-generalized gradient approximation designed for molecules and solids[J]. Phys. Rev. Lett. ,2003,91(14):146401. [23] Andersson Y,Langreth D C,Lundqvist B I. Van der Waals interactions in density-functional theory[J]. Phys. Rev. Lett. ,1996,76(1):102-105. [24] Kohn W,Meir Y,Makarov D E. Van der Waals energies in density functional theory[J]. Phys. Rev. Lett. ,1998,80(19):4153-4156. [25] Becke A D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem. Phys. ,1993,98(2):1372-1377. [26] Sun Yang(孙洋). 锂离子电池电极材料中离子传输与相变反应机理的第一性原理研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2014. [27] Zhou F,Cococcioni M,Marianetti C A, et al . First-principles prediction of redox potentials in transition-metal compounds with LDA + U[J]. Phys. Rev. B ,2004,70(23):235121. [28] Chevrier V L,Ong S P,Armiento R, et al . Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds[J]. Phys. Rev. B ,2010,82(7):75122. [29] Wang L,Maxisch T,Ceder G. A first-principles approach to studying the thermal stability of oxide cathode materials[J]. Chem. Mater. ,2007,19(3):543-552 [30] Gao Y R,Ma J,Wang X F, et al . Improved electron/Li-ion transport and oxygen stability of Mo-doped Li 2 MnO 3 [J]. Journal of Materials Chemistry A ,2014,2(13):4811-4818. [31] Xiao R J,Li H,Chen L Q. Density functional investigation on Li 2 MnO 3 [J]. Chemistry of Materials ,2012,24(21):4242-4251. [32] Goodenough J B,Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials ,2010,22:587-603. [33] Lepley N D,Holzwarth N A W,Du Y A. Structure, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles[J]. Phys. Rev. B ,2013,88:104103. [34] Shi S Q,Liu L J,Ouyang C Y, et al . Enhancement of electronic conductivity of LiFePO 4 by Cr doping and its identification by first-principles calculations[J]. Phys. Rev. B ,2003,68(19):195108. [35] Quartarone E,Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chem. Soc. Rev. ,2011,40(5):2525-2540. [36] Ouyang C Y,Shi S Q,Wang Z X, et al . The effect of Cr doping on Li ion diffusion in LiFePO 4 from first principles investigations and Monte Carlo simulations[J]. Journal of Physics : Condensed Matter .,2004,16(13):2265-2272. [37] Ouyang Chuying(欧阳楚英). 锂离子电池正极材料离子动力学性能研究[D]. Beijing:Institute of Physics Chinese Academy of Sciences,2005. [38] Ouyang C Y,Shi S Q,Wang Z X, et al . First-principles study of Li ion diffusion in LiFePO 4 [J]. Phys. Rev. B ,2004,69(10):104303. [39] Hoang K,Johannes M D. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO 4 [J]. J . Power Sources ,2012,206:274-281. [40] Ohzuku T,Iwakoshi Y,Sawai K. Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell[J]. J. Electrochem. Soc .,1993,140(9):2490-2498. [41] Gu L,Zhu C B,Li H,Yu Y,Li C L,Tsukimoto S,Maier J,Ikuhara Y. Direct observation of lithium staging in partially delithiated LiFePO 4 at atomic resolution[J]. J. Am. Chem. Soc. ,2011,133(13):4661-4663. [42] Sun Y,Lu X,Xiao R J, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chem. Mater. ,2012,24(24):4693-4703. [43] Li H,Huang X J,Chen L Q,Wu Z G,Liang Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries[J]. Electrochem. Solid-State Lett. ,1999,2(11):547-579. [44] Stadler R,Wolf W,Podloucky R, et al . Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi 2 by pseudopotential and all-electron techniques[J]. Phys. Rev. B ,1996,54(3):1729-1734. [45] Shenoy V B,Johari P,Qi Y. Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration:A first-principles study[J]. J. Power Sources ,2010,195(19):6825-6830. [46] Frenkel D,Smit B. Understanding Molecular Simulation[M]. Newyork:Academic Press,2001. [47] Richard M M. Electronic Structure:Basic Theory and Practical Methods[M]. Cambridge:Cambridge University Press,2004. [48] Van der Ven A,Ceder G,Asta M, et al . First-principles theory of ionic diffusion with nondilute carriers[J]. Phys. Rev. B ,2001,64(18):184307. [49] Chen J,Li X Z,Zhang Q F, et al . Quantum simulation of low-temperature metallic liquid hydrogen[J]. Nature Commun. ,2013(4):1-5. [50] Yang J J,Tse J S. Li ion diffusion mechanisms in LiFePO 4 :An ab initio molecular dynamics study[J]. J. Phys. Chem. A ,2011,115(45):13045-13049. [51] Metropolis N,Ulam S M. The Monte Carlo method[J]. J. Am. Statis. Asoc. ,1949,44(247):335-341. [52] Niederreiter H. Quasi-Monte Carlo methods and pseudo-random numbers[J]. Bull. Amer. Math. Soc. ,1978,84(6):957-1041. [53] Hoffmann K H,Meyer A. Parallel Algorithms and Cluster Computing:Implementations, Algorithms and Applations[M]. Berlin:Springer,2006. [54] Binder K. Applications of Monte Carlo methods to statistical physics[J]. Rep. Prog. Phys. ,1997,60(5):487-559. [55] Zheng J Y,Zheng H,Wang R, et al. 3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries[J]. Phys. Chem. Chem. Phys. ,2014,16(26):13229-13238. [56] Methekar R N,Northrop P W C,Chen K, et al . Kinetic Monte Carlo simulation of surface heterogeneity in graphite anodes for lithium-ion batteries:Passive layer formation[J]. J. Electrochem. Soc. ,2011,158(4):A363. [57] Ouyang C Y,Shi S Q,Wang Z X, et al . Temperature-dependent dynamic properties of Li x Mn 2 O 4 in Monte Carlo simulations[J]. Chin. Phys. Lett. ,2005,22(2):489-492. [58] Ouyang C Y,Shi S Q,Wang Z X, et al . The effect of Cr doping on Li ion diffusion in LiFePO 4 from first principles investigations and Monte Carlo simulations[J]. J. Phys. : Condensed Matter. ,2004,16(13):2265-2272. [59] Chen L Q. Phase-field models for microstructure evolution[J]. Ann. Rev. Mater. Res. ,2002,32(1):113-140. [60] Cornell W D,Cieplak P,Bayly C I, et al . A second generation force field for the simulation of proteins, nucleic acids, and organic molecules[J]. J. Am. Chem. Soc. ,1995,117(19):5178-5197. [61] Kobayashi R. Modeling and numerical simulations of dendritic crystal growth[J]. Phys. D : Nonlinear Phenom. ,1993,63(3-4):410-423. [62] Jia Weijian(贾伟建). 凝固微观组织相场法模拟[D]. Lanzhou:Lanzhou University of Technology,2005. [63] Long Wenyuan(龙文元). Phase-field simulations of dendritic growth in aluminum alloy solidification[D]. Wuhan:Huazhong University Science and Technology,2004. [64] Zuo P,Zhao Y P. A phase field model coupling lithium diffusion and stress evolution with crack propagation and application in lithium ion batteries[J]. Phys. Chem. Chem. Phys. ,2014,17(1):287-297. [65] Yamakawa S,Yamasaki H,Koyama T,Asahi R. Numerical study of Li diffusion in polycrystalline LiCoO 2 [J]. J. Power Sources ,2013,223:199-205. [66] Beaulieu L Y,Hatchard T D,Bonakdarpour A, et al . Reaction of Li with alloy thin films studied by in-situ AFM[J]. J. Electrochem. Soc. ,2003,150(11):A1457. [67] Ma Y,Garofalini S H. Atomistic insights into the conversion reaction in iron fluoride:A dynamically adaptive force field approach[J]. J. Am. Chem. Soc. ,2012,134(19):8205-8211. [68] Wang Xucheng(王勖成). 有限单元法[M]. Beijing:Tsinghua University Press,2008. [69] Zhang Wensheng(张文生). 科学计算中的偏微分方程有限差分方法[M]. Beijing:Higher Education Press,2006. [70] Guo G F,Bo L,Bo C, et al . Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application[J]. J. Power Sources ,2010,195(8):2393-2398. [71] Bower A F,Guduru P R. A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials[J]. Modell. Simu. Mater. Sci. Eng. ,2012,20(4):45004. |
[1] | Haitao LI, Lingli KONG, Xin ZHANG, Chuanjun YU, Jiwei WANG, Lin XU. The effects of N/P design on the performances of Ni-rich NCM/Gr lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2040-2045. |
[2] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[3] | XIN Yaoda, LI Na, YANG Le, SONG Weili, SUN Lei, CHEN Haosen, FANG Daining. Integrated sensing technology for lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1834-1846. |
[4] | Liangtao XIONG, Jifen WANG, Huaqing XIE, Xuelai ZHANG. Effect of vacancy defects on thermal conductivity of single-layer graphene by molecular dynamics [J]. Energy Storage Science and Technology, 2022, 11(5): 1322-1330. |
[5] | Biao MA, Chunjing LIN, Lei LIU, Xiaole MA, Tianyi MA, Shiqiang LIU. Venting characteristics and flammability limit of thermal runaway gas of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1592-1600. |
[6] | Luyu GAN, Rusong CHEN, Hongyi PAN, Siyuan WU, Xiqian YU, Hong LI. Multiscale research strategy of lithium ion battery safety issue: Experimental and simulation methods [J]. Energy Storage Science and Technology, 2022, 11(3): 852-865. |
[7] | Peiping YU, Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU, Tao CHENG. Multiscale simulation of a solid electrolyte interphase [J]. Energy Storage Science and Technology, 2022, 11(3): 921-928. |
[8] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[9] | Shanshan MA, Tingting FANG, Liuqian YANG, Shuwan HU. Application of chromatography-mass spectrometry in study of lithium ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 60-65. |
[10] | Jinhui GAO, Yinglong CHEN, Fanhui MENG, Meichao DING, Li WANG, Gang XU, Xiangming HE. Research on in-situ optical microscopic observation in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(1): 53-59. |
[11] | Zeng'ang JIA, Zhibin LING, Xuguang LI. Thermal characteristics of lithium-ion battery with sinusoidal charge and discharge pulsating current [J]. Energy Storage Science and Technology, 2021, 10(6): 2260-2268. |
[12] | Shishi ZHANG, Yanyang QIN, Yaqiong SU. Activity origin of single/double-atom catalyst for hydrogen evolution reaction [J]. Energy Storage Science and Technology, 2021, 10(6): 2008-2012. |
[13] | Kuining LI, Yuncheng XIE, Yi XIE, Qinghua BAI, Jintao ZHENG. Analysis of heat production of nickel-rich lithium-ion battery based on electrochemical thermal coupling model [J]. Energy Storage Science and Technology, 2021, 10(3): 1153-1162. |
[14] | Jinhui GAO, Yunzhu CHEN, Yang YANG, Fanhui MENG, Hong XU, Li WANG, Jiang ZHOU, Xiangming HE. Research progress of reference electrode for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 987-994. |
[15] | Li WANG, Jianhong LIU, Xiangming HE. Research progress on the practical applications of red phosphorus composite anodes [J]. Energy Storage Science and Technology, 2021, 10(2): 425-431. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||