Energy Storage Science and Technology ›› 2015, Vol. 4 ›› Issue (2): 203-214.doi: 10.3969/j.issn.2095-4239.2015.02.013
• Research highlight • Previous Articles Next Articles
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, XU Kaiqi, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie
Received:
2015-02-09
Online:
2015-04-19
Published:
2015-04-19
CLC Number:
ZHAN Yuanjie, CHEN Yuyang, HU Fei, CHEN Bin, YAN Yong, LIN Mingxiang, XU Kaiqi, WANG Hao, BEN Liubin, LIU Yanyan, HUANG Xuejie. Reviews of selected 100 recent papers for lithium batteries (Dec. 1,2014 to Jan. 31,2015)[J]. Energy Storage Science and Technology, 2015, 4(2): 203-214.
[1] Lin F D,Nordlund T,Pan J, et al . Influence of synthesis conditions on the surface passivation and electrochemical behavior of layered cathode materials[J]. Journal of Materials Chemistry A ,2014,2(46):19833-19840. [2] Zheng J M,Gu M,Xiao J, et al . Functioning mechanism of AlF 3 coating on the Li- and Mn-rich cathode materials[J]. Chemistry of Materials ,2014,26(22):6320-6327. [3] Dong L L,Guangshe F,Chao C, et al . LiMO 2 (M = Mn、Co、Ni) hexagonal sheets with (101) facets for ultrafast charging-discharging lithium ion batteries[J]. Journal of Power Sources ,2015,276:238-246. [4] Bak S,Hu M E,Zhou Y, et al . Structural changes and thermal stability of charged LiNi x Mn y Co z O 2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy[J]. ACS Applied Materials & Interfaces ,2014,6(24):22594-22601. [5] Zhang W,Chi Z X,Mao W X, et al . One-nanometer-precision control of Al 2 O 3 nanoshells through a solution-based synthesis route[J]. Angewandte Chemie : International Edition ,2014,53(47):12776-12780. [6] Shi X,Wang C,Zhang Y, et al . Structure and electrochemical behaviors of spherical Li 1+ x Ni 0.5 Mn 0.5 O 2+ δ synthesized by rheological phase reaction method[J]. Electrochimica Acta ,2014,150:89-98. [7] Oishi M,Yogi C,Watanabe I, et al . Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material Li 1.16 Ni 0.15 Co 0.19 Mn 0.50 O 2 [J]. Journal of Power Sources ,2015,276:89-94. [8] Kleiner K,Dixon D,Jakes P, et al . Fatigue of LiNi 0.8 Co 0.15 Al 0.05 O 2 in commercial Li ion batteries[J]. Journal of Power Sources ,2015,273:70-82. [9] Croy J R,Park J S,Dogan F, et al . First-cycle evolution of local structure in electrochemically activated Li 2 MnO 3 [J]. Chemistry of Materials ,2014,26(24):7091-7098. [10] Oka Y,Obata T,Nishimura Y, et al . High-temperature cycling performance of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode with DLC protective film[J]. Journal of the Electrochemical Society ,2015,162(2):A3032-A3037. [11] Long B R,Croy J R,Park J S, et al . Advances in stabilizing 'layered-layered' x Li 2 MnO 3 ·(1- x )LiMO 2 (M=Mn、Ni、Co) electrodes with a spinel component[J]. Journal of the Electrochemical Society ,2014,161(14):A2160-A2167. [12] Zhou Y,Ma N J,Hu E, et al . Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries[J]. Nature Communications ,2014,5:5381. [13] Li J L,Zhu Y Q,Wang L, et al . Lithium titanate epitaxial coating on spinel lithium manganese oxide surface for improving the performance of lithium storage capability[J]. ACS Applied Materials & Interfaces ,2014,6(21):18742-18750. [14] Hur J,Kim I T. Synthesis and electrochemical performance of reduced graphene oxide/AlPO 4 -coated LiMn 1.5 Ni 0.5 O 4 for lithium-ion batteries[J]. Bulletin of the Korean Chemical Society ,2014,35(12):3553-3558. [15] Song J,Han X,Gaskell K J, et al . Enhanced electrochemical stability of high-voltage LiNi 0.5 Mn 1.5 O 4 cathode by surface modification using atomic layer deposition[J]. Journal of Nanoparticle Research ,2014,16:2745. [16] Zeng J,Li M,Li X, et al . A novel coating onto LiMn 2 O 4 cathode with increased lithium ion battery performance[J]. Applied Surface Science ,2014,317:884-891. [17] Hoeweling A,Glatthaar S,Noetzel D, et al . Evidence of loss of active lithium in titanium-doped LiNi 0.5 Mn 1.5 O 4 /graphite cells[J]. Journal of Power Sources ,2015,274:1267-1275. [18] Bianchini M,Suard E,Croguennec L, et al . Li-rich Li 1+ x Mn 2- x O 4 spinel electrode materials:An operando neutron diffraction study during Li + extraction/insertion[J]. Journal of Physical Chemistry C ,2014,118(45):25947-25955. [19] Hwang J,Jang H. Evolution of solid electrolyte interphase during cycling and its effect on electrochemical properties of LiMn 2 O 4 [J]. Journal of the Electrochemical Society ,2015,162(1):A103-A107. [20] Lu J,Zhan C,Wu T, et al . Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach[J]. Nature Communications ,2014,5:5693. [21] Kim D,Yoon T,Park S, et al . Re-deposition of aluminum species after dissolution to improve electrode performances of lithium manganese oxide[J]. Journal of the Electrochemical Society ,2014,161(14):A2020-A2025. [22] Murakami M,Shimizu S,Noda Y, et al . Spontaneous lithium transportation via LiMn 2 O 4 /electrolyte interface studied by 6/7 Li solid-state nuclear magnetic resonance[J]. Electrochimica Acta ,2014,147:540-544. [23] Yavuz M,Kiziltas-Yavuz N,Bhaskar A, et al . Influence of iron on the structural evolution of LiNi 0.4 Fe 0.2 Mn 1.4 O 4 during electrochemical cycling investigated by in situ powder diffraction and spectroscopic methods[J]. Zeitschrift Fur Anorganische Und Allgemeine Chemie ,2014,640(15):3118-3126. [24] Greco G,Brutti S,Vitucci F M, et al . Investigation of the chemical disorder of LiN 0.5 Mn 1.5 O 4 lattice by means of extended X-ray absorption fine structure spectroscopy[J]. Journal of Physical Chemistry C ,2014,118(46):26471-26478. [25] Li Y Y,Gabaly F E,Ferguson T R, et al . Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes[J]. Nature Materials ,2014,13(12):1149-1156. [26] Yim T,Choi S J,Park J H, et al . The effect of an elastic functional group in a rigid binder framework of silicon-graphite composites on their electrochemical performance[J]. Physical Chemistry Chemical Physics ,2015,17(4):2388-2393. [27] Kim Y M,Ahn J,Yu S H, et al . Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries[J]. Electrochimica Acta ,2015,151:256-262. [28] Park H,Choi S,Lee S, et al . Novel design of silicon-based lithium-ion battery anode for highly stable cycling at elevated temperature[J]. Journal of Materials Chemistry A ,2015,3(3):1325-1332. [29] Schroder K W,Dylla A G,Harris S J, et al . Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(23):21510-21524. [30] He Y,Piper D M,Gu M, et al . In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries[J]. ACS Nano ,2014,8(11):11816-11823. [31] Zhao X,Dunlap R A,Obrovac M N. Low surface area Si alloy/ionomer composite anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society ,2014,161(14):A1976-A1980. [32] Dong Y,Ying B,Caiyan Y, et al . A novel pineapple-structured Si/TiO 2 composite as anode material for lithium ion batteries[J]. Journal of Alloys and Compounds ,2014,609:86-92. [33] Avci C,Aydin A,Tuna Z, et al . Molten salt assisted self assembly (MASA):Synthesis of mesoporous metal titanate (CoTiO 3 MnTiO 3 and Li 4 Ti 5 O 12 ) thin films and monoliths[J]. Chemistry of Materials ,2014,26(20):6050-6057. [34] Fan X L,Shao J,Xiao X Z, et al . SnLi 4.4 nanoparticles encapsulated in carbon matrix as high performance anode material for lithium-ion batteries[J]. Nano Energy ,2014,9:196-203. [35] Jin S X,Li N,Cui H, et al . Embedded into graphene Ge nanoparticles highly dispersed on vertically aligned graphene with excellent electrochemical performance for lithium storage[J]. ACS Applied Materials & Interfaces ,2014,6(21):19397-19404. [36] Li F S,Wu Y S,Chou J, et al . A mechanically robust and highly ion-conductive polymer-blend coating for high-power and long-life lithium-ion battery anodes[J]. Advanced Materials ,2015,27(1):130-137. [37] Sole C,Drewett N E,Hardwick L J. In situ Raman study of lithium-ion intercalation into microcrystalline graphite[J]. Faraday Discussions ,2014,172:223-237. [38] Lee H H,Park Y,Shin K H, et al . Abnormal excess capacity of conjugated dicarboxylates in lithium-ion batteries[J]. ACS Applied Materials & Interfaces ,2014,6(21):19118-19126. [39] Kwon M S,Choi A,Park Y, et al . Synthesis of ordered mesoporous phenanthrenequinone-carbon via π-π interaction-dependent vapor pressure for rechargeable batteries[J]. Scientific Reports ,2014,4,doi:10.1038/srep07404. [40] Wang F,Li W,Hou M, et al . Sandwich-like Cr 2 O 3 -graphite intercalation composites as high-stability anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2015,3(4):1703-1708. [41] Su Q M,Zhang J,Wu Y S, et al . Revealing the electrochemical conversion mechanism of porous Co 3 O 4 nanoplates in lithium ion battery by in situ transmission electron microscopy[J]. Nano Energy ,2014,9:264-272. [42] Eastwood D S,Bayley P M,Chang H J, et al . Three-dimensional characterization of electrodeposited lithium microstructures using synchrotron X-ray phase contrast imaging[J]. Chemical Communications ,2015,51(2):266-268. [43] Trocoli R,Franger S,Morales J, et al . Insights on the electrode/electrolyte interfaces in LiFePO 4 based cells with LiAl (Al) and Li (Mg) anodes[J]. Journal of Electroanalytical Chemistry ,2014,732:53-60. [44] Zhu Z,Hong M,Guo D, et al . All-solid-state lithium organic battery with composite polymer electrolyte and pillar 5 quinone cathode[J]. Journal of the American Chemical Society ,2014,136(47):16461-16464. [45] Ma C,Rangasamy E,Liang C, et al . Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li + /H + exchange in aqueous solutions[J]. Angewandte Chemie : International Edition ,2015,54(1):129-133. [46] Ramakumar S,Janani N,Murugan R. Influence of lithium concentration on the structure and Li + transport properties of cubic phase lithium garnets[J]. Dalton Transactions ,2015,44(2):539-552. [47] Christiansen A S,Stamate E,Thyden K, et al . Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films[J]. Journal of Power Sources ,2015,273:863-872. [48] Liu H M,Saikia D,Wu H C, et al . Towards an understanding of the role of hyper-branched oligomers coated on cathodes in the safety mechanism of lithium-ion batteries[J]. RSC Advances ,2014,4(99):56147-56155. [49] Wang B Q,Liu J,Sun Q, et al . Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries[J]. Nanotechnology ,2014,25(50):504007. [50] Liao X L,Huang Q M,Mai S W, et al . Self-discharge suppression of 4.9 V LiNi 0.5 Mn 1.5 O 4 cathode by using tris (trimethylsilyl) borate as an electrolyte additive[J]. Journal of Power Sources ,2014,272:501-507. [51] Yang X L,Xing J L,Liu X, et al . Performance improvement and failure mechanism of LiNi 0.5 Mn 1.5 O 4 /graphite cells with biphenyl additive[J]. Physical Chemistry Chemical Physics ,2014,16(44):24373-24381. [52] Jankowsky S,Hiller M M,Stolina R, et al . Performance of polyphosphazene based gel polymer electrolytes in combination with lithium metal anodes[J]. Journal of Power Sources ,2015,273:574-579. [53] Wang D Y,Xiao A,Wells L, et al . Effect of mixtures of lithium hexafluorophosphate (LiPF 6 ) and lithium bis (fluorosulfonyl) imide (LiFSI) as salts in LiNi 1/3 Mn 1/3 Co 1/3 O 2 /graphite pouch cells[J]. Journal of the Electrochemical Society ,2015,162(1):A169-A175. [54] Matsumoto K,Martinez M,Gutel T, et al . Stability of trimethyl phosphate non-flammable based electrolyte on the high voltage cathode (LiNi 0.5 Mn 1.5 O 4 )[J]. Journal of Power Sources ,2015,273:1084-1088. [55] Li B,Wang Y,Tu W, et al . Improving cyclic stability of lithium nickel manganese oxide cathode for high voltage lithium ion battery by modifying electrode/electrolyte interface with electrolyte additive[J]. Electrochimica Acta ,2014,147:636-642. [56] Adams B D,Black R,Williams Z, et al . Towards a stable organic electrolyte for the lithium oxygen battery[J]. Advanced Energy Materials ,2015,5(1),doi:10.1002/aenm.201400867. [57] Ganapathy S,Adams B D,Stenou G, et al . Nature of Li 2 O 2 oxidation in a LiO 2 battery revealed by operando X-ray diffraction[J]. Journal of the American Chemical Society ,2014,136(46):16335-16344. [58] Johnson L,Li C M,Liu Z, et al . The role of LiO 2 solubility in O 2 reduction in aprotic solvents and its consequences for LiO 2 batteries[J]. Nature Chemistry ,2014,6(12):1091-1099. [59] Balaish M,Peled E,Golodnitsky D, et al . Liquid-free lithium-oxygen batteries[J]. Angewandte Chemie : International Edition ,2015,54(2):436-440. [60] Hu J J,Long G K,Liu S, et al . A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery[J]. Chemical Communications ,2014,50(93):14647-14650. [61] Zu C X,Klein M,Manthiram A. Activated Li 2 S as a high-performance cathode for rechargeable lithium-sulfur batteries[J]. Journal of Physical Chemistry Letters ,2014,5(22):3986-3991. [62] Moy D,Manivannan A,Narayanan S R. Direct measurement of polysulfide shuttle current:A window into understanding the performance of lithium-sulfur cells[J]. Journal of the Electrochemical Society ,2015,162(1):A1-A7. [63] Wu F,Lee J T,Nitta N, et al . Lithium iodide as a promising electrolyte additive for lithium-sulfur batteries:Mechanisms of performance enhancement[J]. Advanced Materials ,2015,27(1):101-108. [64] Zu C,Manthiram A. High-performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content[J]. Advanced Energy Materials ,2014,4,doi:10.1002/ aenm.201400897. [65] Ma L,Zhuang H,Lu Y, et al . Tethered molecular sorbents:Enabling metal-sulfur battery cathodes[J]. Advanced Energy Materials ,2014,4,doi:10.1002/aenm.201400390. [66] Sarasketa-Zabala E,Gandiaga I,Rodriguez-Martinez L M, et al . Calendar ageing analysis of a LiFePO 4 /graphite cell with dynamic model validations:Towards realistic lifetime predictions[J]. Journal of Power Sources ,2014,272:45-57. [67] Waldmann T,Wohlfahrt-Mehrens M. In-operando measurement of temperature gradients in cylindrical lithium-ion cells during high-current discharge[J]. ECS Electrochemistry Letters ,2015,4(1):A1-A3. [68] Corno M,Bhatt N,Savaresi S M, et al . Electrochemical model-based state of charge estimation for Li-ion cells[J]. IEEE Transactions on Control Systems Technology ,2015,23(1):117-127. [69] Jaeshin Y,Jeongbin L,Chee Burm S, et al . Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling[J]. Journal of Power Sources ,2015,277:379-386. [70] Meng X,Song Y C. Impedance model of lithium ion polymer battery considering temperature effects based on electrochemical principle:Part I for high frequency[J]. Journal of Power Sources ,2015,277:403-415. [71] Petzl M,Kasper M,Danzer M A. Lithium plating in a commercial lithium-ion battery:A low-temperature aging study[J]. Journal of Power Sources ,2015,275:799-807. [72] Sidhu A,Izadian A,Anwar S. Adaptive nonlinear model-based fault diagnosis of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics ,2015,62(2):1002-1011. [73] Feng Xuning,Sun Jing,Ouyang Minggao, et al . Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources ,2015,275:261-273. [74] Lohmann N,Wesskamp P,Haussmann P, et al . Electrochemical impedance spectroscopy for lithium-ion cells:Test equipment and procedures for aging and fast characterization in time and frequency domain[J]. Journal of Power Sources ,2015,273:613-623. [75] Bai G X,Wang P F,Hu C, et al . A generic model-free approach for lithium-ion battery health management[J]. Applied Energy ,2014,135:247-260. [76] Bandhauer T,Garimella S,Fuller T F. Electrochemical-thermal modeling to evaluate battery thermal management strategies I side cooling[J]. Journal of the Electrochemical Society ,2015,162(1):A125-A136. [77] Thanh T V,Chen X,Shen W, et al . New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation[J]. Journal of Power Sources ,2015,273:413-422. [78] Schmidt J P,Weber A,Ivers-Tiffee E. A novel and fast method of characterizing the self-discharge behavior of lithium-ion cells using a pulse-measurement technique[J]. Journal of Power Sources ,2015,274:1231-1238. [79] Seid K A,Badot J C,Perca C, et al . An in situ multiscale study of ion and electron motion in a lithium-ion battery composite electrode[J]. Advanced Energy Materials ,2015,5,doi:10.1002/aenm.201400903. [80] Ming H,Ming J,Oh S M, et al . High dispersion of TiO 2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi 0.5 Mn 1.5 O 4 [J]. Journal of Materials Chemistry A ,2014,2(44):18938-18945. [81] Qi X,Blizanac B,DuPasquier A, et al . Investigation of PF 6 - and TFSI- anion intercalation into graphitized carbon blacks and its influence on high voltage lithium ion batteries[J]. Physical Chemistry Chemical Physics ,2014,16(46):25306-25313. [82] Elia G A,Nobili F,Tossici R, et al . Nanostructured tin-carbon/ LiNi 0.5 Mn 1.5 O 4 lithium-ion battery operating at low temperature[J]. Journal of Power Sources ,2015,275:227-233. [83] Hong J,Lee M,Lee B, et al . Biologically inspired pteridine redox centres for rechargeable batteries[J]. Nature Communications ,2014,5:5335. [84] Takahashi Y,Kumatani A,Munakata H, et al . Nanoscale visualization of redox activity at lithium-ion battery cathodes[J]. Nature Communications ,2014,5:5450. [85] Molina Piper D,Seoung-Bum S,Travis J J, et al . Mitigating irreversible capacity losses from carbon agents via surface modification[J]. Journal of Power Sources ,2015,275:605-611. [86] Li J,Fang Q H,Liu F, et al . Analytical modeling of dislocation effect on diffusion induced stress in a cylindrical lithium ion battery electrode[J]. Journal of Power Sources ,2014,272:121-127. [87] Berkemeier F,Stockhoff T,Gallasch T, et al . Volume diffusion and interface transport in LiCoO 2 measured by electrochromic absorption[J]. Acta Materialia ,2014,80:132-140. [88] Cho J H,Aykol M,Kim S, et al . Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries[J]. Journal of the American Chemical Society ,2014,136(46):16116-16119. [89] Duan H,Li J,Chiang S W, et al . First-principles study of native defects in LiTi 2 O 4 [J]. Computational Materials Science ,2015,96:263-267. [90] Kalantarian M M,Oghbaei M,Asgari S, et al . Understanding non-ideal voltage behaviour of cathodes for lithium-ion batteries[J]. Journal of Materials Chemistry A ,2014,2(45):19451-19460. [91] Tompsett D A,Islam M S. Surfaces of rutile MnO 2 are electronically conducting whereas the bulk material is insulating[J]. Journal of Physical Chemistry C ,2014,118(43):25009-25015. [92] Chen L,Liu Y,Ashuri M, et al . Li 2 S encapsulated by nitrogen-doped carbon for lithium sulfur batteries[J]. J. Mater. Chem. A ,2014,2(42):18026-18032. [93] Taminato S,Hirayama M,Suzuki K, et al . Mechanistic studies on lithium intercalation in a lithium-rich layered material using Li 2 RuO 3 epitaxial film electrodes and in situ surface X-ray analysis[J]. Journal of Materials Chemistry A ,2014,2(42):17875-17882. [94] Hoang K. Understanding the electronic and ionic conduction and lithium over-stoichiometry in LiMn 2 O 4 spinel[J]. Journal of Materials Chemistry A ,2014,2(43):18271-18280. [95] Saubanere M,Ben Yahia M,Lebegue S, et al . An intuitive and efficient method for cell voltage prediction of lithium and sodium-ion batteries[J]. Nature Communications ,2014,5:5559. [96] Mees M J,Pourtois G,Rosciano F, et al . First-principles material modeling of solid-state electrolytes with the spinel structure[J]. Physical Chemistry Chemical Physics ,2014,16(11):5399-5406. [97] Aykol M,Kirklin S,Wolverton C. Thermodynamic aspects of cathode coatings for lithium-ion batteries[J]. Advanced Energy Materials ,2014,4,doi:10.1002/aenm.201400690. [98] Fehse M,Ben Yahia M,Monconduit L, et al . New insights on the reversible lithiation mechanism of TiO 2 (B) by operando X-ray absorption spectroscopy and X-ray diffraction assisted by first-principles calculations[J]. Journal of Physical Chemistry C ,2014,118(47):27210-27218. [99] Nakayama M,Taki H,Nakamura T, et al . Combined computational and experimental study of Li exchange reaction at the surface of spinel LiMn 2 O 4 as a rechargeable Li-ion battery cathode[J]. Journal of Physical Chemistry C ,2014,118(47):27245-27251. [100] Dixit H,Zhou W,Idrobo J C, et al . Facet-dependent disorder in pristine high-voltage lithium-manganese-rich cathode material[J]. ACS Nano ,2014,8(12):12710-12716. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Yingwei PEI, Hong ZHANG, Xinghui WANG. Recent advances in the electrolytes of rechargeable zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082. |
[3] | Sida HUO, Wendong XUE, Xinli LI, Yong LI. Visualization analysis of composite electrolytes for lithium battery based on CiteSpace [J]. Energy Storage Science and Technology, 2022, 11(7): 2103-2113. |
[4] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | OU Yu, HOU Wenhui, LIU Kai. Research progress of smart safety electrolytes in lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1772-1787. |
[7] | ZHOU Weidong, HUANG Qiu, XIE Xiaoxin, CHEN Kejun, LI Wei, QIU Jieshan. Research progress of polymer electrolyte for solid state lithium batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1788-1805. |
[8] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[9] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[10] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[11] | Maolin FANG, Ying ZHANG, Lin QIAO, Shumin LIU, Zhongqi CAO, Huamin ZHANG, Xiangkun MA. Research progress of iron-chromium flow batteries technology [J]. Energy Storage Science and Technology, 2022, 11(5): 1358-1367. |
[12] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[13] | Honghui WANG, Zeqin WU, Deren CHU. Thermal behavior of lithium titanate based Li ion batteries under slight over-discharging condition [J]. Energy Storage Science and Technology, 2022, 11(5): 1305-1313. |
[14] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[15] | Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery [J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||