Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 462-469.doi: 10.19799/j.cnki.2095-4239.2020.0361
• Energy Storage Materials and Devices • Previous Articles Next Articles
Min'an YANG(), Ning CHEN(), Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI
Received:
2020-11-06
Revised:
2020-11-29
Online:
2021-03-05
Published:
2021-03-05
Contact:
Ning CHEN
E-mail:yangminan666@163.com;nchen@sina.com
CLC Number:
Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(2): 462-469.
Fig. 1
(a) Material classification in lithium ion battery database and classification of inorganic non-metallic materials; (b) Classification of typical cathode materials: LiMO2 is a general term for ternary materials and multi-component materials. It is a material doped based on LiCoO2, LiNiO2 and LiMnO2. LiM2O4 is similar; Li2MSiO4(M=Fe, Mn, Ni) and LiMBO3(M=Fe, Mn, Co) are composed of several similar materials"
Table 1
Capacity retention rate, cell volume and elastic modulus before and after lithium loss, coefficient of lithium loss and compaction pressure of 18 cathode materials"
体系 | 化学式 | 容量保持率/% | V1/?3 | V2/?3 | B1/GPa | B2/GPa | 脱锂系数 | p/GPa | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
层状 | LiCoO2 | 90.64 | 240.01 | 180.04 | 154.08 | 205.62 | 0.5 | 14.96 | [ |
LiNiO2 | 82.85 | 225.53 | 166.25 | 175.43 | 238.47 | 0.5 | 17.43 | [ | |
LiMnO2 | 79.14 | 167.95 | 134.50 | 158.68 | 198.64 | 0.5 | 13.32 | [ | |
橄榄石 | LiFePO4 | 91.95 | 366.38 | 321.03 | 300.34 | 58.73 | 1 | 17.72 | [ |
LiCoPO4 | 9.40 | 253.87 | 239.93 | 103.89 | 258.15 | 0.75 | 0.83 | [ | |
LiNiPO4 | 30.00 | 320.77 | 317.45 | 394.61 | 96.36 | 0.75 | 9.88 | [ | |
LiMnPO4 | 48.19 | 217.56 | 210.61 | 296.86 | 359.57 | 0.75 | 13.11 | [ | |
尖晶石 | LiMn2O4 | 78.78 | 251.95 | 238.13 | 266.86 | 255.57 | 0.75 | 15.96 | [ |
硅酸盐 | Li2FeSiO4 | 81.16 | 135.82 | 126.34 | 81.33 | 196.25 | 0.5 | 6.88 | [ |
Li2MnSiO4 | 17.61 | 367.10 | 288.23 | 55.70 | 108.39 | 0.5 | 4.45 | [ | |
Li2NiSiO4 | 86.76 | 195.59 | 159.88 | 81.68 | 67.12 | 0.5 | 8.34 | [ | |
硼酸盐 | LiFeBO3 | 83.19 | 363.76 | 287.80 | 168.19 | 84.58 | 0.75 | 13.60 | [ |
LiMnBO3 | 38.07 | 341.00 | 308.66 | 177.15 | 126.61 | 0.33 | 6.50 | [ | |
LiCoBO3 | 48.98 | 346.20 | 312.96 | 205.00 | 137.44 | 0.25 | 5.29 | [ | |
其他 | Li3V2(PO4)3 | 69.70 | 322.00 | 292.21 | 188.04 | 162.17 | 0.667 | 2.24 | [ |
Li2FeP2O7 | 78.38 | 785.47 | 772.58 | 162.50 | 155.07 | 0.5 | 5.20 | [ | |
LiVOPO4 | 93.19 | 242.10 | 228.20 | 165.67 | 127.69 | 0.75 | 2.58 | [ | |
Li4V3O8 | 77.74 | 327.57 | 320.94 | 48.11 | 157.41 | 0.75 | 3.90 | [ |
1 | 王朔, 周格, 禹习谦, 等. 储能技术领域发表文章和专利概览综述[J]. 储能科学与技术, 2017, 6(4): 810-838. |
WANG Shuo, ZHOU Ge, YU Xiqian, et al. Overview of research papers and patents on energy storage technologies[J]. Energy Storage Science and Technology, 2017, 6(4): 810-838. | |
2 | YANG Xiaoguang, WANG Chaoyang. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries[J]. Journal of Power Sources, 2018, 402: 489-498. |
3 | BIRKL C R, ROBERTS M R, MCTURK E, et al. Degradation diagnostics for lithium ion cells[J]. Journal of Power Sources, 2017, 341: 373-386. |
4 | RAMADASS P, HARAN B, WHITE R, et al. Capacity fade of sony 18650 cells cycled at elevated temperatures (II:) Capacity fade analysis[J]. Journal of Power Sources, 2002, 112(2): 606-613. |
5 | FRIESEN A, MÖNNIGHOFF X, BÖRNER M, et al. Influence of temperature on the aging behavior of 18650-type lithium ion cells: A comprehensive approach combining electrochemical characterization and post-mortem analysis[J]. Journal of Power Sources, 2017, 342: 88-97. |
6 | ASAKURA K, SHIMOMURA M, SHODAI T. Study of life evaluation methods for Li-ion batteries for backup applications[J]. Journal of Power Sources, 2003, 119: 902-905. |
7 | 范智伟, 乔丹, 崔海港. 锂离子电池充放电倍率对容量衰减影响研究[J]. 电源技术, 2020, 44(3): 325-329. |
FAN Zhiwei, QIAO Dan, CUI Haigang. Influence of charge and discharge rate on capacity fade of lithium ion battery[J]. Chinese Journal of Power Sources, 2020, 44(3): 325-329. | |
8 | 雷文, 何涌, 于江波. LiMn2O4锂离子电池正极材料结构稳定性的初步研究[J]. 材料导报, 2001(10): 62-64. |
LEI Wen, HE Yong, YU Jiangbo. Preliminary study of structural stability of cathode material LiMn2O4 for lithium batteries[J]. Materials Reports, 2001(10): 62-64. | |
9 | WANG Wenhui, ZHANG Jiaolong, JIA Zheng, et al. Enhancement of the cycling performance of Li3V2(PO4)3/C by stabilizing the crystal structure through Zn2+ doping[J]. Physical Chemistry Chemical Physics, 2014, 16(27): 13858-13865. |
10 | 唐致远, 阮艳莉. 锂离子电池容量衰减机理的研究进展[J]. 化学进展, 2005(1): 1-7. |
TANG Zhiyuan, RUAN Yanli. Progress in capacity fade mechanism of lithium ion battery[J]. Progress in Chemistry, 2005(1): 1-7. | |
11 | AURBACH D, MARKOVSKY B, RODKIN A, et al. An analysis of rechargeable lithium-ion batteries after prolonged cycling[J]. Electrochimica Acta, 2003, 47(12): 1899-1911. |
12 | 谢宗轩. 电动汽车用动力电池循环寿命的层析图像预测机理研究[D]. 广州: 华南理工大学, 2019. |
XIE Zongxuan. Research on prediction mechanism of cycle life of power battery for electric vehicle by tomography[D]. Guangzhou: South China University of Technology, 2019. | |
13 | 时玮. 动力锂离子电池组寿命影响因素及测试方法研究[D]. 北京: 北京交通大学, 2014. |
SHI Wei. Research on lifespan factors and test methods of traction lithium-ion batteries[D]. Beijing: Beijing Jiaotong University, 2014. | |
14 | MURALIGANTH T, MANTHIRAM A. Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes[J]. Journal of Physical Chemistry C, 2015, 114(36): 15530-15540. |
15 | CHEN Guimin, GENG Hailong, WANG Zhenwei, et al. On electrochemistry of Al2O3-coated LiCoO2 composite cathode with improved cycle stability[J]. Ionics, 2015, 22(5): 629-636. |
16 | ZHANG Wei, CHI Zixiang, MAO Wenxin, et al. One-nanometer-precision control of Al2O3 nanoshells through a solution-based synthesis route[J]. Angewandte Chemie International Edition, 2014, 53(47): 12776-80. |
17 | CAO Hui, XIA Baojia, ZHANG Yao, et al. LiAlO-coated LiCoO as cathode material for lithium ion batteries[J]. Solid State Ionics, 2005, 176(9/10): 911-914. |
18 | KWON Sung Nam, SONG Myoung Youp, PARK Hye Ryoung. Electrochemical properties of LiNiO2 substituted by Al or Ti for Ni via the combustion method[J]. Ceramics International, 2014, 40(9): 14141-14147. |
19 | SONG Myoung Youp, KWON IkHyun, SHIM Sungbo, et al. Electrochemical characterizations of Fe-substituted LiNiO2 synthesized in air by the combustion method[J]. Ceramics International, 2010, 36(4): 1225-1231. |
20 | KWON Sung Nam, SONG Jihong, MUMM D R. Effects of cathode fabrication conditions and cycling on the electrochemical performance of LiNiO2 synthesized by combustion and calcination[J]. Ceramics International, 2011, 37(5): 1543-1548. |
21 | PARK Hye Ryoung. Electrochemical properties of LiNiO2 and LiNiO2 substituted with Ga, Al and/or Ti[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 698-702. |
22 | YOSHIDA R, KODERA T, MYOUJIN K, et al. Synthesis and electrochemical properties of layered type LiMnO2 powders by spray pyrolysis[J]. Transactions of the Materials Research Society of Japan, 2009, 34(1): 129-132. |
23 | JI Hongmei, MIAO Xiaowei, WANG Lu, et al. Effects of microwave-hydrothermal conditions on the purity and electrochemical performance of orthorhombic LiMnO2[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(3): 359-366. |
24 | HE Wen, CUI Jingjie, YUE Yuanzheng, et al. High-performance TiO2 from Baker's yeast[J]. Journal of Colloid and Interface Science, 2011, 354(1): 109-15. |
25 | 王雷, 唐致远, 阮艳莉, 等. 新型正极材料LiFePO4的电化学性能的改进[J]. 电源技术, 2006, 30(7): 549-548. |
WANG Lei, TANG Zhiyuan, RUAN Yanli, et al. Improvement of electrochemical performance of LiFePO4 as a novel cathode material[J]. Chinese Journal of Power Sources, 2006, 30(7): 549-548. | |
26 | GUO Hui, ZHANG Xudong, HE Wen, et al. Fabricating three-dimensional mesoporous carbon network-coated LiFePO4/Fe nanospheres using thermal conversion of alginate-biomass[J]. RSC Advances, 2016 6(21): 16933-16940. |
27 | XU Feifei, WANG Ruiqiong, ZHANG Ronglan, et al. Structure and electrochemical performance of LiFePO4 modified with mononuclear and binuclear phthalocyanines as cathode materials[J]. Journal of Materials Research, 2017, 32(6): 1168-1176. |
28 | ORNEK, AHMET. The synthesis of novel LiNiPO4 core and Co3O4/CoO shell materials by combining them with hard-template and solvothermal routes[J]. J Colloid Interface, 2017, 504: 468-478. |
29 | CHEN Houyong, CHEN Meng, DU Chunyu, et al. Synthesis and electrochemical performance of hierarchical nanocomposite of carbon coated LiCoPO4 crosslinked by graphene[J]. Materials Chemistry & Physics, 2016, 171: 6-10. |
30 | EFTEKHARI A. Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide[J]. Journal of the Electrochemical Society, 2004, 151(9): A1456-A1460. |
31 | WANG Fei, YANG Jun, NULI Yanna, et al. Highly promoted electrochemical performance of 5 V LiCoPO4 cathode material by addition of vanadium[J]. Journal of Power Sources, 2010, 195(19): 6884-6887. |
32 | KIM Jae-Kwang, SHIN Cho-Rong, AHN Jou-Hyeon, et al. Highly porous LiMnPO4 in combination with an ionic liquid-based polymer gel electrolyte for lithium batteries[J]. Electrochemistry Communications, 2011, 13(10): 1105-1108. |
33 | MAEYOSHI Y, MIYAMOTO S, NODA Y, et al. Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method[J]. Journal of Power Sources, 2017, 337: 92-99. |
34 | SIVAKUMAR D, DURAISAMY N, RAMESH] S. Structural and electrochemical characterizations of LiMn1-xAl0.5xCu0.5xPO4 (x=0. 0, 0. 1, 0. 2) cathode materials for lithium ion batteries[J]. Materials Letters, 2016, 173: 131-135. |
35 | 崔永丽, 徐坤, 袁铮, 等. 石墨烯/尖晶石LiMn2O4纳米复合材料制备及电化学性能[J]. 无机化学学报, 2013, 29(1): 50-56. |
CUI Yongli, XU Kun, YUAN Zheng, et al. Synthesis and electrochemical performance of graphene modified; nano-spinel LiMn2O4 cathode materials[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(1): 50-56. | |
36 | 王连邦, 唐伟杰, 苏利伟, 等. 纳米LiMn2O4的动态水热法制备及储锂性能[J]. 浙江工业大学学报, 2014, 42(5): 473-477. |
WANG Lianbang, TANG Weijie, SU Liwei, et al. Preparation and lithium storage performance of LiMn2O4 nanomaterials by dynamic hydrothermal synthesis[J]. Journal of Zhejiang University of Technology, 2014, 42(5): 473-477. | |
37 | ZOU Xing, WU Peng, XIE Haichao. Effect of high levels of impurity calcium on the electrochemical performance of spinel LiMn2O4[C]//International Conference on Material Science & Engineering, 2016. |
38 | SHENOUDA A Y, SANAD M M S. Electrochemical performance optimization of Li2NixFe1-xSiO4 cathode materials for lithium-ion batteries[J]. Journal of Electrochemical Energy Conversion & Storage, 2017, 14(2): 024501. |
39 | TAN Guiming, GUI D Y, XIONG Weijian, et al. Sol-gel synthesis of Li2MnSiO4/C nanocomposite with improved electrochemical performance for lithium-ion batteries [C]// 2015 16th International Conference on Electronic Packaging Technology (ICEPT), 2015. |
40 | 吴婷婷, 刘婧雅, 李永虎, 等. B掺杂对Li2MnSiO4电化学性能的影响[J]. 电源技术, 2018, 42(3): 321-323. |
WU Tingting, LIU Jingya, LI Yonghu, et al. Effects of B doping on electrochemical performance of Li2MnSiO4[J]. Chinese Journal of Power Sources, 2018, 42(3): 321-323. | |
41 | DONG Yongzhong, ZHAO Yanming, SHI Z D, et al. The structure and electrochemical performance of LiFeBO3 as a novel Li-battery cathode material[J]. Electrochimica Acta, 2008, 53(5): 2339-2345. |
42 | CHEN Wei, ZHANG Hua, ZHANG Xiaoping, et al. Synthesis and electrochemical performance of carbon-coated LiMnBO3 as cathode materials for lithium-ion batteries[J]. Ionics, 2018, 24: 73-81. |
43 | RAGUPATHI V, SRIMATHI K, PANIGRAHI P, et al. Electrochemical performance of sol-gel derived hexagonal LiMnBO3 cathode material for lithium-ion batteries[J]. Nano Hybrids and Composites, 2017, 17: 106-112. |
44 | 侯兴梅, 赵彦明, 董有忠. 新型锂离子电池正极材料LiMnBO3的制备及其性能[J]. 电源技术, 2008, 32(9): 611-613. |
HOU Xingmei, ZhAO Yanming, DONG Youzhong. Preparation and characterization of new cathode material LiMnBO3 for lithium ion battery[J]. Chinese Journal of Power Sources, 2008, 32(9): 611-613. | |
45 | ZHANG Liqiang, WANG Xiuli, XIANG Jiayuan, et al. Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag+C) composite cathode[J]. Journal of Power Sources, 2010, 195(15): 5057-5061. |
46 | LEE S N, KIM Hye Sook, AN J Y, et al. Preparation and characterization of chlorine doped Li3V2(PO4)3 as high rate cathode active material for lithium secondary batteries[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(10): 7516-7520. |
47 | 李万隆, 李月姣, 曹美玲, 等. 流变相法制备海藻酸基碳包覆Li3V2(PO4)3材料的电化学性能[J]. 物理化学学报, 2017, 33(11): 2261-2267. |
LI Wanlong, LI Yuejiao, CAO Meiling, et al. Synthesis and electrochemical performance of alginic acid-based carbon-coated Li3V2(PO4)3 composite by rheological phase method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267. | |
48 | LAI Chunyan, WEI Jiaojiao, WANG Zhen, et al. Li3V2(PO4)3/(SiO2+C) composite with better stability and electrochemical properties for lithium-ion batteries[J]. Solid State Ionics, 2015, 272: 121-126. |
49 | XU Jiantie, CHOU Shulei, GU Qinfen, et al. Study on vanadium substitution to iron in Li2FeP2O7 as cathode material for lithium-ion batteries[J]. Electrochimica Acta, 2014, 141: 195-202. |
50 | KERR T A. Highly reversible Li insertion at 4 V in ε-VOPO4/α-LiVOPO4 cathodes[J]. Electrochemical and Solid-State Letters, 1999, 3(10): 460. |
51 | SHEN Chao, ZHENG Junchao, ZHANG Bao, et al. Composite cathode material β-LiVOPO4/LaPO4 with enhanced electrochemical properties for lithium ion batteries[J]. RSC Advances, 2014, 4(77): 40912-40916. |
52 | HAMEED A S, NAGARATHINAM M, REDDY M V, et al. Synthesis and electrochemical studies of layer-structured metastable α-LiVOPO4[J]. Journal of Materials Chemistry, 2012, 22(15): 7206-7213. |
53 | 熊利芝, 何则强. 一种新的流变相法制备锂离子电池纳米LiVOPO4正极材料[J]. 物理化学学报, 2010, 26(3): 573-577. |
XIONG Lizhi, HE Zeqiang. A new rheological phase route to synthesize nano-LiVOPO4 cathode material for lithiumion batteries[J]. Acta Physico-Chimica Sinica, 2010, 26(3): 573-577. | |
54 | REN Xiangzhong, HU Shengming, SHI Chuan, et al. Preparation and electrochemical properties of Zr-doped LiV3O8 cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(6): 2135-2141. |
55 | REN Xiangzhong, HU Shengming, SHI Chuan, et al. Preparation of Ga-doped lithium trivanadates as cathode materials for lithium-ion batteries[J]. Electrochimica Acta, 2012, 63: 232-237. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[6] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[7] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[8] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[9] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[10] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[11] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[12] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[13] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[14] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
[15] | Jun WANG, Lin RUAN, Yanliang QIU. Research progress on rapid heating methods for lithium-ion battery in low-temperature [J]. Energy Storage Science and Technology, 2022, 11(5): 1563-1574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||