1 |
DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature, 2001, 414(6861): 332-337.
|
2 |
KALOGIROU S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295.
|
3 |
CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303.
|
4 |
CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chemical Reviews, 2017, 117(15): 10403-10473.
|
5 |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603.
|
6 |
SUN Y, LEE H W, ZHENG G, et al. In situ chemical synthesis of lithium fluoride/metal nanocomposite for high capacity prelithiation of cathodes[J]. Nano Letters, 2016, 16(2): 1497-1501.
|
7 |
WANG Z, FU Y, ZHANG Z, et al. Application of stabilized lithium metal powder (SLMP®) in graphite anode-A high efficient prelithiation method for lithium-ion batteries[J]. Journal of Power Sources, 2014, 260: 57-61.
|
8 |
LIU Y, YANG B, DONG X, et al. A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance[J]. Angewandte Chemie International Edition, 2017, 56(52): 16606-16610.
|
9 |
LI X, LIANG J, HOU Z, et al. The design of a high-energy Li-ion battery using germanium-based anode and LiCoO2 cathode[J]. Journal of Power Sources, 2015, 293: 868-875.
|
10 |
WU Z, JI S, ZHENG J, et al. Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability[J]. Nano Letters, 2015, 15(8): 5590-5596.
|
11 |
SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2015.8.
|
12 |
ZOU K, DENG W, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: Concepts, applications, and perspectives[J]. Advanced Functional Materials, 2020, doi: 10.1002/adfm.202005581.
|
13 |
QI Y, GUO H, HECTOR L G, et al. Threefold increase in the Young's modulus of graphite negative electrode during lithium intercalation[J]. Journal of the Electrochemical Society, 2010, 157(5): doi: https://doi.org/10.1149/1.3327913.
|
14 |
YAMADA A, CHUNG S C, HINOKUMA K. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society, 2001, 148(3): doi: 10.1002/chin.200129017.
|
15 |
HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid-State Letters, 2001, 4(10): doi: 10.1149/1.1396695.
|
16 |
ROTH E P, DOUGHTY D H, FRANKLIN J. DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders[J]. Journal of Power Sources, 2004, 134(2): 222-234.
|