Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 722-731.doi: 10.19799/j.cnki.2095-4239.2020.0357
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Yanxin XIE(), Shunli WANG(), Weihao SHI, Xin XIONG, Xianpei CHEN
Received:
2020-11-04
Revised:
2020-11-10
Online:
2021-03-05
Published:
2021-03-05
Contact:
Shunli WANG
E-mail:xieyanxin_98@163.com;wangshunli@swust.edu.cn
CLC Number:
Yanxin XIE, Shunli WANG, Weihao SHI, Xin XIONG, Xianpei CHEN. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation[J]. Energy Storage Science and Technology, 2021, 10(2): 722-731.
Table 1
Model parameters under different SOC states"
SOC/% | UOCV/V | R0/Ω | RP/Ω | CP/F |
---|---|---|---|---|
100 | 4.1877 | 0.00124 | 0.000385571 | 21503.14931 |
90 | 4.0535 | 0.00125 | 0.000414714 | 19570.0999 |
80 | 3.9363 | 0.00125 | 0.000458429 | 18286.38205 |
70 | 3.8268 | 0.00124 | 0.000463714 | 18328.09612 |
60 | 3.7406 | 0.00124 | 0.000454286 | 18303.45912 |
50 | 3.6504 | 0.00125 | 0.000321 | 25476.63551 |
40 | 3.6151 | 0.00127 | 0.000310857 | 24483.91544 |
30 | 3.5863 | 0.0013 | 0.000335571 | 23470.41294 |
20 | 3.5270 | 0.00134 | 0.000405286 | 20775.46704 |
10 | 3.4486 | 0.00142 | 0.000648714 | 11952.87382 |
1 | ZHU Jiangong, KNAPP M, DARMA M S D, et al. An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application[J]. Applied Energy, 2019, 248: 149-161. |
2 | SHEN Ping, OUYANG Minggao, LU Languang, et al. The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 92-103. |
3 | YANG Zhuo, PATIL D, FAHIMI B. Electrothermal modeling of lithium-ion batteries for electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(1): 170-179. |
4 | TROVO A, SACCARDO A, GIOMO M, et al. Thermal modeling of industrial-scale vanadium redox flow batteries in high-current operations[J]. Journal of Power Sources, 2019, 424: 204-214. |
5 | ANDRE D, APPEL C, SOCZKA-GUTH T, et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries[J]. Journal of Power Sources, 2013, 224: 20-27. |
6 | ZHOU Di, ZHENG Wenbin, FU Ping, et al. Research on online estimation of available capacity of lithium batteries based on daily charging data[J]. Journal of Power Sources, 2020, 451: 227713. |
7 | LAI Xin, WANG Shuyu, MA Shangde, et al. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: 135239. |
8 | 刘小菡, 王顺利, 熊鑫, 等. 融合GM(1, 1)先验估计的扩展卡尔曼SOC估算[J]. 制造业自动化, 2020, 42(4): 150-153.LIU Xiaohan, WANG Shunli, XIONG Xin, et al. Extended kalman SOC estimation combining GM(1,1) prior estimates[J]. Manufacturing Automation, 2020, 42(4): 150-153. |
9 | 尚丽平, 王顺利, 李占锋, 等. 基于放电试验法的机载蓄电池SOC估计方法研究[J]. 电源学报, 2014(1): 61-65.SHANG Liping, WANG Shunli, LI Zhanfeng, et al. Airborne battery soc estimate method study based on discharge test method[J]. Journal of Power Supply, 2014(1): 61-65. |
10 | 徐超, 李立伟, 杨玉新, 等. 基于改进粒子滤波的锂电池SOH预测[J]. 储能科学与技术, 2020, 9(6): 1954-1960.XU Chao, LI Liwei, YANG Yuxin, et al. Lithium-ion battery SOH estimation based on improved particle filter[J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. |
11 | 韦海燕, 陈静, 王惠民, 等. 新陈代谢灰色粒子滤波实现电池剩余寿命预测[J]. 电工技术学报, 2020, 35(6): 1181-1188.Wei Haiyan, Chen Jing, Wang Huimin, et al. Remaining useful life prediction of battery using metabolic grey particle filter[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1181-1188. |
12 | 罗世昌, 杨进. 基于迭代卡尔曼粒子滤波器的锂电池SOC估算算法研究[J]. 工业控制计算机, 2019, 32(2): 104-106. |
13 | SONG Ziyou, HOU Jun, LI Xuefeng, et al. The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection[J]. Energy, 2020, 193: 66-77. |
14 | 樊翠玲. 改进粒子滤波的锂电池SOC估算[J]. 实验室研究与探索, 2018, 37(1): 134-138.FAN Cuiling. Estimation of lithium battery SOC based on improved particle filter[J]. Research and Exploration in Laboratory, 2018, 37(1): 134-138. |
15 | XIONG Rui, ZHANG Yongzhi, HE Hongwen, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1526-1538. |
16 | 徐文华, 王顺利, 于春梅, 等. 基于Thevenin模型和UKF的锂电池SOC估算方法研究[J]. 自动化仪表, 2020, 41(5): 31-36.XU Wenhua, WANG Shunli, YU Chunmei, et al. Research on the estimation method of lithium battery SOC based on Thevenin model and UKF[J]. Process Automation Instrumentation, 2020, 41(5): 31-36. |
17 | ZHANG Zhiyong, ZHANG Liuzhu, HU Lin, et al. Active cell balancing of lithium-ion battery pack based on average state of charge[J]. International Journal of Energy Research, 2020, 44(4): 2535-2548. |
18 | ZHANG Xi, GAO Yizhao, GUO Bangjun, et al. A novel quantitative electrochemical aging model considering side reactions for lithium-ion batteries[J]. Electrochimica Acta, 2020, 343: 136070. |
19 | WANG Ranran, FENG Hailin. Lithium-ion batteries remaining useful life prediction using Wiener process and unscented particle filter[J]. Journal of Power Electronics, 2020, 20(1): 270-278. |
20 | WANG Zhi, OUYANG Dongxu, CHEN Mingyi, et al. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6): 2239-2247. |
21 | XIE Fei, WANG Shunli, XIE Yanxin, et al. A novel battery state of charge estimation based on the joint unscented kalman filter and support vector machine algorithms[J]. International Journal of Electrochemical Science, 2020, 15(8): 7935-7953. |
22 | SONG Lingjun, LIANG Tongyi, LU Languang, et al. Lithium-ion battery pack equalization based on charging voltage curves[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105516. |
[1] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[2] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[3] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
[4] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[5] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[6] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[7] | Zhihui GUO, Xiaodan CUI, Linshuang ZHAO, Jiawei CHEN. Fire and gas explosion hazards of high-nickel lithium-ion battery [J]. Energy Storage Science and Technology, 2022, 11(1): 193-200. |
[8] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. |
[9] | Hang SU, Huaibin GAO, Zhengguang LI, Hongjun LI, Jianfei LIU, Xiaobo ZUO, Linlin JI. State of charge estimation of Li-ion battery based on BCRLS-ACKF [J]. Energy Storage Science and Technology, 2021, 10(6): 2334-2341. |
[10] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[11] | Bin LI, Lei XU, Zheng ZHENG, Dandan HU, Guobin ZHANG. Multiple staggered symmetric equalization scheme based on Cuk circuits [J]. Energy Storage Science and Technology, 2021, 10(4): 1400-1406. |
[12] | Xiaoli ZHANG, Yuetong WANG, Jinsong XIA, Yingying ZHANG. Estimation of the SOC of lithium batteries based on an improved CDKF algorithm [J]. Energy Storage Science and Technology, 2021, 10(4): 1454-1462. |
[13] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[14] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
[15] | Qiao WANG, Meng WEI, Min YE, Jiabo LI, Xinxin XU. Estimation of lithium-ion battery SOC based on GWO-optimized extreme learning machine [J]. Energy Storage Science and Technology, 2021, 10(2): 744-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||