Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (2): 744-751.doi: 10.19799/j.cnki.2095-4239.2020.0389
• Energy Storage Test: Methods and Evaluation • Previous Articles Next Articles
Qiao WANG(), Meng WEI, Min YE(), Jiabo LI, Xinxin XU
Received:
2020-12-02
Revised:
2020-12-20
Online:
2021-03-05
Published:
2021-03-05
CLC Number:
Qiao WANG, Meng WEI, Min YE, Jiabo LI, Xinxin XU. Estimation of lithium-ion battery SOC based on GWO-optimized extreme learning machine[J]. Energy Storage Science and Technology, 2021, 10(2): 744-751.
1 | LU Languang, HAN Xuebing, LI Jianqiu, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226: 272-288. |
2 | CHEN Cheng, XIONG Rui, SHEN Weixiang. A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2017, 33(1): 332-342. |
3 | HOW D N T, HANNAN M A, LIPU M S H, et al. State of charge estimation for lithium-ion batteries using model-based and data-driven methods: A review[J]. IEEE Access, 2019, 7: 136116-136136. |
4 | 罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(5): 681-687. |
LUO Yong, QI Pengwei, HUANG Huan, et al. Study on battery SOC estimation by Ampere-hour integral method with capacity correction[J]. Automotive Engineering, 2020, 42(5): 681-687. | |
5 | 安治国, 田茂飞, 赵琳, 等. 基于自适应无迹卡尔曼滤波的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(5): 856-861. |
AN Zhiguo, TIAN Maofei, ZHAO Lin, et al. SOC estimation of lithium battery based on adaptive untracked Kalman filter[J]. Energy Storage Science and Technology, 2019, 8(5): 856-861. | |
6 | 陈德海, 王超, 朱正坤, 等. 交互多模型无迹卡尔曼滤波算法预测锂电池SOC[J]. 储能科学与技术, 2020, 9(1): 257-265. |
CHEN Dehai, WANG Chao, ZHU Zhengkun, et al. Lithium battery state-of-charge estimation based on interactive multi-model unscented Kalman filter algorithm[J]. Energy Storage Science and Technology, 2020, 9(1): 257-265. | |
7 | 侍壮飞, 玄东吉, 李广诚, 等. 改进的UKF算法估算锂离子电池SOC[J]. 电池, 2019, 49(2): 105-108. |
SHI Zhuangfei, XUAN Dongji, LI Guangcheng, et al. Li-ion battery SOC estimation based on improved UKF algorithm[J]. Battery Bimonthly, 2019, 49(2): 105-108. | |
8 | YE Min, GUO Hui, CAO Binggang. A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter[J]. Applied Energy, 2017, 190: 740-748. |
9 | 董满, 刘淑琴. 基于UKF和AH法的磁悬浮人工心脏泵用锂电池SOC估计复合算法[J]. 山东大学学报(工学版), 2018, 48(2): 121-127. |
DONG Man, LIU Shuqin. A compound algorithm for SOC estimation of lithium batteries for magnetic suspension artificial heart pump based on UKF and AH[J]. Journal of Shandong University (Engineering Science), 2018, 48(2): 121-127. | |
10 | WEI Meng, YE Min, LI Jiabo, et al. State of charge estimation of lithium-ion batteries using LSTM and NARX neural networks[J]. IEEE Access, 2020, 8: 189236-189245. |
11 | 王虹, 徐佑宇, 谭冲, 等. 基于改进粒子群的BP神经网络WSN数据融合算法[J]. 中国科学院大学学报, 2020, 37(5): 673-680. |
WANG Hong, XU Youyu, TAN Chong, et al. Information fusion algorithm based on improved particle swarm BP neural network in WSN[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(5): 673-680. | |
12 | 王泰华, 张书杰, 陈金干. 基于BP-PSO算法的锂电池低温充电策略优化[J]. 储能科学与技术, 2020, 9(6): 1940-1947. |
WANG Taihua, ZHANG Shujie, CHEN Jingan. Low temperature charging performance optimization of lithium battery based on BP-PSO Algorithm[J]. Energy Storage Science and Technology, 2020, 9(6): 1940-1947. | |
13 | 苏振浩, 李晓杰, 秦晋, 等. 基于BP人工神经网络的动力电池SOC估算方法[J]. 储能科学与技术, 2019, 8(5): 868-873. |
SU Zhenhao, LI Xiaojie, QIN Jin, et al. SOC estimation method of power battery based on BP artificial neural network[J]. Energy Storage Science and Technology, 2019, 8(5): 868-873. | |
14 | 赵钢, 朱芳欣, 窦汝振. 基于PSO-BP的电动汽车锂离子电池SOC估算[J]. 电源技术, 2018, 42(9): 1318-1320. |
ZHAO Gang, ZHU Fangxin, DOU Ruzhen. SOC estimation of lithium battery for electric vehicle based on PSO-BP neural network[J]. Chinese Journal of Power Sources, 2018, 42(9): 1318-1320. | |
15 | LI Shuangqi, HE Hongwen, LI Jianwei. Big data driven lithium-ion battery modeling method based on SDAE-ELM algorithm and data pre-processing technology[J]. Applied Energy, 2019, 242: 1259-1273. |
16 | DU Jiani, LIU Zhitao, WANG Youyi. State of charge estimation for Li-ion battery based on model from extreme learning machine[J]. Control Engineering Practice, 2014, 26: 11-19. |
17 | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. |
[1] | Shunmin YI, Linbo XIE, Li PENG. Remaining useful life prediction of lithium-ion batteries based on VF-DW-DFN [J]. Energy Storage Science and Technology, 2022, 11(7): 2305-2315. |
[2] | Qingwei ZHU, Xiaoli YU, Qichao WU, Yidan XU, Fenfang CHEN, Rui HUANG. Semi-empirical degradation model of lithium-ion battery with high energy density [J]. Energy Storage Science and Technology, 2022, 11(7): 2324-2331. |
[3] | Yuzuo WANG, Jin WANG, Yinli LU, Dianbo RUAN. Study on the effects of pore structure on lithium-storage performances for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(7): 2023-2029. |
[4] | Wei KONG, Jingtao JIN, Xipo LU, Yang SUN. Study on cooling performance of lithium ion batteries with symmetrical serpentine channel [J]. Energy Storage Science and Technology, 2022, 11(7): 2258-2265. |
[5] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[6] | YAN Qiaoyi, WU Feng, CHEN Renjie, LI Li. Recovery and resource recycling of graphite anode materials for spent lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1760-1771. |
[7] | WANG Yuzuo, DENG Miao, WANG Jin, YANG Bin, LU Yinli, JIN Ge, RUAN Dianbo. Study on the effects of carbonization temperature on lithium-storage kinetics for soft carbon [J]. Energy Storage Science and Technology, 2022, 11(6): 1715-1724. |
[8] | YU Chunhui, HE Ziying, ZHANG Chenxi, LIN Xianqing, XIAO Zhexi, WEI Fei. The analyses and suppressing strategies of silicon anode with the electrolyte [J]. Energy Storage Science and Technology, 2022, 11(6): 1749-1759. |
[9] | WANG Can, MA Pan, ZHU Guoliang, WEI Shuimiao, YANG Zhilu, ZHANG Zhiyu. Effect of lithium acrylic-coated nature graphite on its electrochemical properties [J]. Energy Storage Science and Technology, 2022, 11(6): 1706-1714. |
[10] | LIU Hangxin, CHEN Xiantao, SUN Qiang, ZHAO Chenxi. Cycle performance characteristics of soft pack lithium-ion batteries under vacuum environment [J]. Energy Storage Science and Technology, 2022, 11(6): 1806-1815. |
[11] | Guangyu CHENG, Xinwei LIU, Yueni MEI, Honghui GU, Cheng YANG, Ke WANG. Capacity fading analysis of lithium-ion battery after high temperature storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1339-1349. |
[12] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[13] | Chunjing LIN, Danhua LI, Haoran WEN, Tianyi MA, Hong CHANG, Peixiang CHANG, Haiqiang LI, Shiqiang LIU. Research on swelling force characteristics of power battery during charging [J]. Energy Storage Science and Technology, 2022, 11(5): 1627-1633. |
[14] | Qiaomin KE, Jian GUO, Yiwei WANG, Wenjiong CAO, Man CHEN, Fangming JIANG. The effect of liquid-cooled thermal management on thermal runaway of power battery [J]. Energy Storage Science and Technology, 2022, 11(5): 1634-1640. |
[15] | Zhenkai HU, Bo LEI, Yongqi LI, Youjie SHI, Qikai LEI, Zhipeng HE. Comparative study on safety test and evaluation methods of lithium-ion batteries for energy storage [J]. Energy Storage Science and Technology, 2022, 11(5): 1650-1656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||