Energy Storage Science and Technology ›› 2017, Vol. 6 ›› Issue (4): 644-654.doi: 10.12028/j.issn.2095-4239.2017.0056
Previous Articles Next Articles
CHE Haishan, CHEN Qianqiao, ZHONG Qin, HE Si
Received:
2017-05-16
Revised:
2017-05-25
Online:
2017-07-01
Published:
2017-06-02
CHE Haishan, CHEN Qianqiao, ZHONG Qin, HE Si. Preparation and thermal properties of erythritol-based phase change composite fibers[J]. Energy Storage Science and Technology, 2017, 6(4): 644-654.
[1] DU Y, DING Y. Towards improving charge/discharge rate of latent heat thermal energy storage (LHTES) by embedding metal foams in phase change materials (PCMs)[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 181-188. [2] 戴晓丽. 相变胶囊传热及其在储能墙体中应用研究[D]. 南京: 东南大学, 2014. DAI Xiaoli. Heat transfer in phase change capsule and is applied research in phase change wall[D]. Nanjing: Southeast University, 2014. [3] XU B, LI Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage[J]. Applied Energy, 2013, 105: 229-237. [4] 李得伦. 石蜡相变材料的传热与控温性能研究[D]. 广州: 华南理工大学, 2012. LI Delun. Research on the heat transfer and thermal control performance of paraffin phase change material[D]. Guangzhou: South China University of Technology, 2012. [5] 陈枭, 张仁元, 毛凌渡. 石蜡类相变材料的研究及应用进展[J]. 材料研究与应用, 2008, 2(2): 89-92. CHEN Xiao, ZHANG Renyuan, MAO Lingdu. Progress in research and application of paraffin wax phase change material[J]. Materials Research & Application, 2008, 2(2): 89-92. [6] 黄雪, 崔英德, 张步宁, 等. 脂肪酸类相变材料传热及液相渗漏的研究进展[J]. 化工进展, 2014, 33(10): 2676-2680. HUANG Xue, CUI Yingde, ZHANG Buning, et al. Review on heat transfer and liquid phase leakage of fatty acids phase change materials[J]. Chemical Industry & Engineering Progress, 2014, 33(10): 2676-2680. [7] LI M, WU Z, KAO H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials[J]. Applied Energy, 2011, 88(9): 3125-3132. [8] 黄雪. 三元低共熔脂肪酸复合相变材料的制备及热性能研究[D]. 广州: 广东工业大学, 2015. HUANG Xue. The preparation and thermal properties of fatty acids ternary eutectic mixture composite phase change material[D]. Guangzhou: Guangdong University of Technology, 2015. [9] QIAN T, LI J, MA H, et al. Adjustable thermal property of polyethylene glycol/diatomite shape-stabilized composite phase change material[J]. Polymer Composites, 2016, 37(3): 854-860. [10] 童波. 多元醇类相变材料的制备及热力学性质研究[D]. 大连: 中国科学院大连化学物理研究所, 2008. TONG Bo. Preparation and thermal properties of polyols phase change materials[D]. Dalian: Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2008. [11] SHIN H K, RHEE K Y, PARK S J. Effects of exfoliated graphite on the thermal properties of erythritol-based composites used as phase-change materials[J]. Composites Part B: Engineering, 2016, 96: 350-353. [12] LUO Z, ZHANG Q, WU G. Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material[J]. International Journal of Heat and Mass Transfer, 2015, 80: 653-659. [13] AGYENIM F, EAMES P, SMYTH M. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system[J]. Renewable Energy, 2011, 36(1): 108-117. [14] KAIZAWA A, KAMANO H, KAWAI A, et al. Technical feasibility study of waste heat transportation system using phase change material from industry to city[J]. ISIJ International, 2008, 48(4): 540-548. [15] DIARCE G, QUANT L, CAMPOS-CELADOR Á, et al. Determination of the phase diagram and main thermophysical properties of the erythritol-urea eutectic mixture for its use as a phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 157: 894-906. [16] DIARCE G, GANDARIAS I, CAMPOS-CELADOR Á, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50~90 ℃ temperature range[J]. Solar Energy Materials & Solar Cells, 2015, 134(3): 215-226. [17] YU J S, HORIBE A, HARUKI N, et al. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel[J]. Heat & Mass Transfer, 2016, 52(11): 1-12. [18] 周卫兵, 蔡凡凡, 朱教群, 等. 己二酸/膨胀石墨复合相变材料性能研究[J]. 功能材料, 2014, 45(15): 15075-15079. ZHOU Weibing, CAI Fanfan, ZHU Jiaoqun, et al. Study on performance of adipic acid/expanded graphite composite phase change materials[J]. Journal of Functional Materials, 2014, 45(15): 15075-15079. [19] 高学农, 刘欣, 孙滔, 等. 基于复合相变材料的电子芯片热管理性能研究[J]. 高校化学工程学报, 2013(2): 187-192. GAO Xuenong, LIU Xin, SUN Tao, et al. Research on the thermal management performance of electronic chip with composite phase change material[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(2): 187-192. [20] 宋金亮, 郭全贵, 仲亚娟, 等. 高密度石墨泡沫及其石蜡复合材料的热物理性能[J]. 新型炭材料, 2012, 27(1): 27-34. SONG Jinliang, GUO Quangui, ZHONG Yajuan, et al. Thermophysical properties of high-density graphite foams and their paraffin composites[J]. New Carbon Materials, 2012, 27(1): 27-34. [21] JI H, SELLAN D P, PETTES M T, et al. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage[J]. Energy & Environmental Science, 2013, 7(3): 1185-1192. [22] HALLAJI H, KESHTKAR A R, MOUSAVIAN M A. Effect of ZnO content on polyvinyl alcohol/zinc oxide nanofiber adsorbent for removal of heavy metals from aqueous solution[C]//International Chemical Engineering Congress and Exhibition, Iran: Kish, 2014. [23] 王为, 章学来, 韩中, 等. 纳米氧化铝与赤藻糖醇复合相变材料的实验研究[J]. 化学工程, 2012, 40(10): 21-24. WANG Wei, ZHANG Xuelai, HAN Zhong, et al. Experimental study on nano-alumina/erythritol composite as phase change material[J]. Chemical Engineering, 2012, 40(10): 21-24. [24] 丁晴, 方昕, 范利武, 等. 不同二维纳米填料对复合相变材料导热系数的影响[J]. 储能科学与技术, 2014, 3(3): 250-255.. DING Qing,FANG Xin,FAN Liwu,et a1. Influence of 2-D nano fillers on the thermal conductivity of composite PCMs[J]. Energy Storage Science and Technology, 2014, 3(3): 250-255. [25] GOLI P, LEGEDZA S, DHAR A, et al. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 37-43. [26] YAVARI F, FARD H R, PASHAYI K, et al. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives[J]. The Journal of Physical Chemistry C, 2011, 115(17): 8753-8758. [27] 葛志伟, 叶锋, 杨军, 等. 中高温储热材料的研究现状与展望[J]. 储能科学与技术, 2012, 1(2): 89-102. GE Zhiwei, YE Feng, YANG J, et al. Recent progress and prospective of medium and high temperatures thermal energy storage materials[J]. Energy Storage Science & Technology, 2012, 1(2): 89-102. [28] 张仁元, 柯秀芳, 李爱菊. 无机盐/陶瓷基复合储能材料的制备和性能[J]. 材料研究学报, 2000, 14(6): 652-656. ZHANG Renyuan, KE Xiufang, LI Aiju. Preparation and performance of salt/ceramic composite energy storage materials[J]. Chinese Journal of Materials Research, 2000, 14(6): 652-656. [29] GE Z, YE F, DING Y. Composite materials for thermal energy storage: enhancing performance through microstructures[J]. ChemSusChem, 2014, 7(5): 1318. [30] 李清璠, 洪卫, 潘圣阳, 等. 相变储热微胶囊的研究进展[J]. 工程塑料应用, 2014(12): 118-122. LI Qingpan, HONG Wei, PAN Shengyang, et al. Research development of micro-encapsulated phase change materials[J]. Engineering Plastics Application, 2014(12): 118-122. [31] 赵长颖, 潘智豪, 王倩, 等. 多孔介质的相变和热化学储热性能[J]. 科学通报, 2016, 61(17): 1897-1911. ZHAO Changying, PAN Zhihao, WANG Qian, et al. Heat transfer of phase change materials (PCMs) and thermochemical heat storage in porous materials[J]. Chinese Science Bulletin, 2016, 61(17): 1897-1911 [32] 盛强, 邢玉明, 王泽. 泡沫金属复合相变材料的制备与性能分析[J]. 化工学报, 2013, 64(10): 3565-3570. SHENG Qiang, XING Yuming, WANG Ze. Preparation and performance analysis of metal foam composite phase change material[J]. CIESC Journal, 2013, 64(10): 3565-3570. [33] 朱冬生, 刘世杰, 徐婷, 等. 石墨/十四酸复合相变材料的热性能研究[J]. 太阳能学报, 2014, 35(5): 819-824. ZHU Dongsheng, LIU Shijie, XU Ting, et al. Study on performance of graphite/MA composite phase change material[J]. Acta Energiae Solaris Sinica, 2014, 35(5): 819-824. [34] 李月锋, 张东. 水溶液法制备NaNO3-LiNO3/石墨复合高温相变材料研究[J]. 功能材料, 2013, 44(10): 1451-1456. LI Yuefeng, ZHANG Dong. Study on high-temperature phase change composites of NaNO3-LiNO3/expanded graphite by saturated water solution method[J]. Journal of Functional Materials, 2013, 44(10): 1451-1456. [35] LING Z, CHEN J, XU T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. [36] 成时亮. 聚乙二醇/二醋酸纤维素-g-聚乙二醇单甲醚相变储能材料的制备及研究[D]. 上海: 东华大学, 2008. CHENG Shiliang. Synthesis and study of a novel phase change material with heat storage-CDA-g-MPEG/PEG[D]. Shanghai: Donghua University, 2008. [37] CHEN C, WANG L, HUANG Y. Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite[J]. Polymer, 2007, 48(18): 5202-5207. [38] CHEN C, LIU K, WANG H, et al. Morphology and performances of electrospun polyethylene glycol/poly(dl-lactide) phase change ultrafine fibers for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2013, 117: 372-381. [39] 柯惠珍, 逄增媛, 宗雪, 等. 负载脂肪酸酯的定形相变复合纤维的制备与性能研究[J]. 功能材料, 2014, 45(11): 11051-11055. KE Huizhen, PANG Zengyuan, ZONG Xue, et al. Preparation and properties of form-stable phase change composite fibers with the GMS loading[J]. Journal of Functional Materials, 2014, 45(11): 11051-11055. [40] 柯惠珍, 蔡以兵, 魏取福, 等. 静电纺LA-PA/PET定形相变复合纤维的制备与表征[J]. 纺织学报, 2012, 33(10): 1-6. KE Huizhen, CAI Yibing, WEI Qufu, et al. Preparation and characterization of electrospun LA-PA/PET form-stable phase change composite fibers[J]. Journal of Textile Research, 2012, 33(10): 1-6. [41] KE H, LI Y, WANG J, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable Energy, 2016, 99: 1-9. [42] ABATE L, CHISARI A, MAGGIORE R, et al. Thermal behaviour of Uranium (VI) complexes. Uranyl acetate dihydrate-thiourea system: Synthesis and decomposition[J]. Journal of Thermal Analysis, 1983, 27(1): 139-149. [43] BARRIO E P D, GODIN A, DUQUESNE M, et al. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications[J]. Solar Energy Materials & Solar Cells, 2017, 159: 560-569. [44] LI Y, TANG L, LI J. Preparation and electrochemical performance for methanol oxidation of Pt/graphene nanocomposites[J]. Electrochemistry Communications, 2009, 11(4): 846-849. [45] WANG L, MENG D. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage[J]. Applied Energy, 2010, 87(8): 2660-2665. |
[1] | Wei ZENG, Junjie XIONG, Jianlin LI, Suliang MA, Yiwen WU. Optimal configuration of energy storage power station in multi-energy system based on weight adaptive whale optimization algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2241-2249. |
[2] | Zhen YAO, Qi ZHANG, Rui WANG, Qinghua LIU, Baoguo WANG, Ping MIAO. Application of biomass derived carbon materials in all vanadium flow battery electrodes [J]. Energy Storage Science and Technology, 2022, 11(7): 2083-2091. |
[3] | Yu SHI, Zhong ZHANG, Jingying YANG, Wei QIAN, Hao LI, Xiang ZHAO, Xintong YANG. Opportunity cost modelling and market strategy of energy storage participating in the AGC market [J]. Energy Storage Science and Technology, 2022, 11(7): 2366-2373. |
[4] | Jianmin HAN, Feiyu XUE, Shuangyin LIANG, Tianshu QIAO. Hybrid energy storage system assisted frequency modulation simulation of the coal-fired unit under fuzzy control optimization [J]. Energy Storage Science and Technology, 2022, 11(7): 2188-2196. |
[5] | Zhiying LU, Shan JIANG, Quanlong LI, Kexin MA, Teng FU, Zhigang ZHENG, Zhicheng LIU, Miao LI, Yongsheng LIANG, Zhifei DONG. Open-circuit voltage variation during charge and shelf phases of an all-vanadium liquid flow battery [J]. Energy Storage Science and Technology, 2022, 11(7): 2046-2050. |
[6] | Shufeng DONG, Lingchong LIU, Kunjie TANG, Haiqi ZHAO, Chengsi XU, Liheng LIN. The teaching method of energy storage control experiment based on Simulink and low-code controller [J]. Energy Storage Science and Technology, 2022, 11(7): 2386-2397. |
[7] | Yuhan GUO, Dan YU, Peng YANG, Ziji WANG, Jintao WANG. Optimal capacity allocation method of a distributed energy storage system based on greedy algorithm [J]. Energy Storage Science and Technology, 2022, 11(7): 2295-2304. |
[8] | Xingzhong YUAN, Bin HU, Fan GUO, Huan YAN, Honggang JIA, Zhou SU. EU energy storage policies and market mechanism and its reference to China [J]. Energy Storage Science and Technology, 2022, 11(7): 2344-2353. |
[9] | Guojing LIU, Bingjie LI, Xiaoyan HU, Fen YUE, Jiqiang XU. Australia policy mechanisms and business models for energy storage and their applications to china [J]. Energy Storage Science and Technology, 2022, 11(7): 2332-2343. |
[10] | Xiaojie YANG, Haiyun WANG, Zhongchuan JIANG, Zhanghua SONG. Bidirectional power flow strategy design of BLDC motor for flywheel energy storage [J]. Energy Storage Science and Technology, 2022, 11(7): 2233-2240. |
[11] | Hongtao LI, Shuai ZHANG, Xudong LI, Yunguang JI, Mingxu SUN, Xin LI. Application of single tank energy storage and heat exchange system in hot air non-woven fabric process [J]. Energy Storage Science and Technology, 2022, 11(7): 2250-2257. |
[12] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[13] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[14] | WU Yuting, KOU Zhenfeng, ZHANG Cancan, WU Yiyang. Analysis of the dynamic distribution parameters of a solid sodium chloride column heat exchanger [J]. Energy Storage Science and Technology, 2022, 11(6): 1988-1995. |
[15] | FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions [J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||