1 |
PAN H , HU Y S , CHEN L . Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ. Sci., 2013, 6: 2338-2360.
|
2 |
王红, 廖小珍, 颉莹莹, 等 . 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68.
|
|
WANG H , LIAO X Z , XIE Y Y , et al ., Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
|
3 |
XIE Y , WANG H , XU G , et al . In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Adv. Energy Mater., 2016, 6:1601306.
|
4 |
杨旸, 严小敏, 杨德志, 等 . 普鲁士蓝类钠离子电池正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 303-308.
|
|
YANG Y , YAN X , YANG D , et al . Progress in prussian blue in sodium ion cathode material[J]. Energy Storage Science and Technology, 2016, 5(3): 303-308.
|
5 |
CHE H , CHEN S , XIE Y , et al . Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy Environ. Sci., 2017, 10: 1075-1101.
|
6 |
PONROUCH A , MARCHANTE E , COURTY M , et al . In search of an optimized electrolyte for Na-ion batteries[J]. Energy Environ. Sci., 2012, 5: 8572-8583.
|
7 |
BHIDE A , HOFMANN J , DURR A K , et al . Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na0.7CoO2 [J]. Phys. Chem. Chem. Phys., 2014, 16: 1987-1998.
|
8 |
VIDAL-ABARCA C , LAVELA P , TIRADO J L , et al . Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent[J]. J. Power Sources, 2012, 197: 314-318.
|
9 |
CHE H , YANG X , WANG H , et al . Long cycle life of sodium-ion pouch cell achieved by using multiple electrolyte additives[J]. J. Power Sources, 2018, 407: 173-179.
|
10 |
MATSUMOTO K , HWANG J , KAUSHIK S , et al . Advances in sodium secondary batteries utilizing ionic liquid electrolytes[J]. Energy Environ. Sci., 2019, 12: 3247-3287.
|
11 |
WU F , ZHU N , BAI Y . Highly safe ionic liquid electrolytes for sodium-ion battery: wide electrochemical window and good thermal stability[J]. ACS Appl. Mater. Inter., 2016, 8: 21381-21386.
|
12 |
HASA I , PASSERINI S , HASSOUN J . Characteristics of an ionic liquid electrolyte for sodium-ion batteries[J]. J. Power Sources, 2016, 303: 203-207.
|
13 |
ZENG Z , JIANG X , LI R , et al . A safer sodium-ion battery based on nonflammable organic phosphate electrolyte[J]. Adv. Sci., 2016, 3: doi: 1600066.
|
14 |
WANG J , YAMADA Y , SODEYAMA K , et al . Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3: 22-29.
|
15 |
YU Y , CHE H , YANG X , et al . Non-flammable organic electrolyte for sodium-ion batteries[J]. Electrochem. Commun., 2020, 110: 106635.
|
16 |
FENG J , AN J , CI L, et al . Nonflammable electrolyte for safer non-aqueous sodium batteries[J]. J. Mater. Chem. A, 2015, 3: 14539.
|
17 |
LIU Y , FANG S , SHI P , et al . Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries[J]. J. Power Sources, 2016, 331: 445-451.
|
18 |
SHI P , FANG S , LUO D , et al . A safe electrolyte based on propylene carbonate and non-flammable hydrofluoroether for high-performance lithium ion batteries[J]. J. Electrochem. Soc., 2017, 164(9): A1991-A1999.
|
19 |
LUO Y , LU T , ZHANG Y , et al . Enhanced electrochemical performance of LiNi0.5Mn1.5O4 cathode using an electrolyte with 3-(1,1,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoropropane[J]. J. Power Sources, 2016, 323: 134-141.
|
20 |
SHI P , ZHENG H , LIANG X , et al . A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries[J]. Chem. Commun., 2018, 54: 4453-4456.
|
21 |
XU K , DING M S , ZHANG S , et al . An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes[J]. J. Electrochem. Soc., 2002, 149(5): A622-A626.
|
22 |
GEBRESILASSIE E G , THOMAS D , MARAL H , et al . Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019, 55: 327-340.
|
23 |
CHE H , LIU J , WANG H , et al . Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery[J]. Electrochem Commun., 2017, 83: 20-23.
|
24 |
MU L , FENG X , KOU R , et al . Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials[J]. Adv. Energy Mater., 2018, 8: doi: 1801975.
|