Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (2): 400-408.doi: 10.19799/j.cnki.2095-4239.2020.0010
Previous Articles Next Articles
MA Tianyi(), WANG Fang, XU Dapeng, LIN Chunjing, LIU Shiqiang, CHEN Liduo
Received:
2020-01-05
Revised:
2020-01-15
Online:
2020-03-05
Published:
2020-03-15
Contact:
Tianyi MA
E-mail:wangfang2011@catarc.ac.cn
CLC Number:
MA Tianyi, WANG Fang, XU Dapeng, LIN Chunjing, LIU Shiqiang, CHEN Liduo. Investigation of the performance and safety degradation caused by slight accumulation of electricity in traction batteries[J]. Energy Storage Science and Technology, 2020, 9(2): 400-408.
1 | WANG Y , LIU B , LI Q , et al . Lithium and lithium ion batteries for applications in microelectronic devices: A review[J]. Journal of Power Sources, 2015, 286: 330-345. |
2 | TARASCON J M , ARMAND M . Issues and challenges facing rechargeable lithium batteries, in: Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishing group[J]. World Scientific, 2011: 171-179. |
3 | MARON R , AMALRAJ S F , LEIFER N , et al . A review of advanced and practical lithium battery materials[J]. Journal of Materials Chemistry, 2011, 21: 9938-9954. |
4 | ETACHERI V , MARON R , ELAZARI R , et al . Challenges in the development of advanced Li-ion batteries: A review[J]. Energy & Environmental Science, 2011, 4: 3243-3262. |
5 | LIU S , XIONG L , HE C . Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291. |
6 | MA T , YU X , LI H , et al . High volumetric capacity of hollow structured SnO2@Si nanospheres for lithium-ion batteries[J]. Nano Letters, 2017, 17:3959. |
7 | NITTA N , WU F , LEE J T, et al . Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18: 252-264. |
8 | BALOGUN M S , QIU W , LUO Y , et al . A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials[J]. Nano Research, 2016, 9: 2823-2851. |
9 | AHMED S , NELSON P A , GALLAGHER K G , et al . Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries[J]. Journal of Power Sources, 2017, 342: 733-740. |
10 | KWASIEFFAH C C , RABCZUK T . Dimensional analysis and modelling of energy density of lithium-ion battery[J]. Journal of Energy Storage, 2018, 18: 308-315. |
11 | WEN J , YU Y , CHEN C . A review on lithium-ion batteries safety issues: Existing problems and possible solutions[J]. Materials Express, 2012, 2: 197-212. |
12 | TSUJIKAWA T , YABUTA K , ARAKAWA M , et al . Safety of large-capacity lithium-ion battery and evaluation of battery system for telecommunications[J]. Journal of Power Sources, 2013, 244: 11-16. |
13 | LASERNA E M , ZABALA E S , SARRIA I V , et al . Technical viability of battery second life: A study from the ageing perspective[J]. IEEE Transactions on Industry Applications, 2018, 54: 2073-2713. |
14 | HEYMANS C , WALKER S B , YOUNG S B , et al . Economic analysis of second use electric vehicle batteries for residential energy storage and load-levelling[J]. Energy Policy, 2014, 71: 22-30. |
15 | SCHMIDT A , SMITH A , EHRENBERG H . Power capability and cyclic aging of commercial, high power lithium ion battery cells with respect to different cell designs[J]. Journal of Power Sources, 2019, 425: 27-38. |
16 | FENG X , OUYANG M , LIU X , et al . Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
17 | WEI W W , DING L Y , CHENG L , et al . State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365. |
18 | TAO W , WANG P , YOU Y , et al . Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries[J]. Nano Research, 2019, 12: 1739-1749. |
19 | ARORA S , SHEN W , KAPOOR A , et al . Review of mechanical design and strategic placement technique of a robust battery pack for electric vehicles[J]. Renewable & Sustainable Energy Reviews, 2016, 60: 1319-1331. |
20 | HU E , BAK S M, SENANAYAKE S D , et al . Thermal stability in the blended lithium manganese oxide-Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-ray diffraction and mass spectroscopy study[J]. Journal of Power Sources, 2015, 277: 193-197. |
21 | OUYANG D , CHEM M , LIU J , et al . Investigation of a commercial lithium-ion battery under overcharge/over-discharge failure conditions[J]. RSC Advances, 2018, 8: 33414-33424. |
22 |
WANG Y , WU C , GU X . Research on fault diagnosis method for over-discharge of power lithium battery, in: Theory, methodology, tools and applications for modeling and simulation of complex systems[M]. Singapore: Springer, 2016,doi: https://doi.org/10.1007/978-981-10-2669-0_34308-314 .
doi: 10.1007/978-981-10-2669-0_34308-314 |
23 | FUENTEVILLA D , HENDRICKS C , MANSOUR A . Quantifying the impact of overdischarge on large format lithium-ion cells[J]. ECS Transactions, 2015, 69: 1-4. |
24 | JEEVARAJAN J , STRANGWAYS B , NELSON T . Hazards due to overdischarge in lithium-ion cylindrical cells in multi-cell configurations[J]. NASA Technical Reports, 2010, 22(570): 1-12. |
25 | TAN Y , WANG K . Silicon-based anode materials applied in high specific energy lithium-ion batteries: A review[J]. Journal of Inorganic Materials, 2019, 34: 349-357. |
26 | DUBARRY M , TRUCHOT C , DEVIE A , et al . Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle (PHEV) applications IV. over-discharge phenomena[J]. Journal of The Electrochemical Society, 2015, 162: A1787-A1792. |
27 | CHEN J , BUHRMESTER C , DAHN J . Chemical overcharge and overdischarge protection for lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2005, 8: A59-A62. |
28 | 余仲宝, 胡俊伟, 初旭光, 等 . 过放电对MCMB-LiCoO2电池性能的影响[J]. 电池工业, 2006, 11(4): 223-226. |
YU Z , HU J , CHU X , et al . Effects of over-discharge on performance of MCMB-LiCoO2 lithium-ion battery[J]. Chinese Battery Industry, 2006, 11(4): 223-226. | |
29 | LAI X , ZHENG Y , ZHOU L , et al . Electrical behavior of overdischarge-induced internal short circuit in lithium-ion cells[J]. Electrochimica Acta, 2018, 278: 245-254. |
30 | GUO R , LU L , OUYANG M , et al . Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248. |
31 | HASHIMOTO M , YAMASHIRO M , ICHIHASHI T , et al . Mechanism of gas generation in lithium ion batteries by overdischarge[J]. ECS Transactions, 2015, 69: 17-22. |
32 | GAO T , WANG B , FANG H , et al . Li3V2(PO4)3 as a cathode additive for the over-discharge protection of lithium ion batteries[J]. RSC Advances, 2016, 6: 76933-76937. |
33 | SIEGEL J , LIN X , STEFANOPOULOU A , et al . Neutron imaging of lithium concentration in LFP pouch cell battery[J]. Journal of The Electrochemical Society, 2011, 158: A523-A529. |
34 | SIEGEL J , STEFANOPOULOU A , HANGANS P , et al . Expansion of lithium ion pouch cell batteries: Observations from neutron imaging[J]. Journal of The Electrochemical Society, 2013, 160: A1031-A1038. |
35 | SAME A , BATTAGLIA V , TANG H , et al . In situ neutron radiography analysis of graphite/NCA lithium-ion battery during overcharge[J]. Journal of Applied Electrochemistry, 2012, 42: 1-9. |
36 | BUTLER L , SCHILLINGER B , HAM K, et al . Neutron imaging of a commercial Li-ion battery during discharge: Application of monochromatic imaging and polychromatic dynamic tomography[J]. Nuclear Instruments and Methods in Physics Research A, 2011, 651: 320-328. |
37 | KAMATA M , ESAKA T , KODAMA N , et al . Application of neutron radiography to visualize the motion of lithium ions in lithium-ion conducting materials[J]. Journal of The Electrochemical Society, 1996, 143: 1866-1870. |
[1] | Long CHEN, Quan XIA, Yi REN, Gaoping CAO, Jingyi QIU, Hao ZHANG. Research prospect on reliability of Li-ion battery packs under coupling of multiple physical fields [J]. Energy Storage Science and Technology, 2022, 11(7): 2316-2323. |
[2] | DING Yi, YANG Yan, CHEN Kai, ZENG Tao, HUANG Yunhui. Intelligent fire protection of lithium-ion battery and its research method [J]. Energy Storage Science and Technology, 2022, 11(6): 1822-1833. |
[3] | Zheng ZHENG, Xiaoshuai WANG, Bin LI, Tao HUANG, Peike LI. Adaptive interleaved control equalization for lithium-ion battery packs based on three-winding transformers [J]. Energy Storage Science and Technology, 2022, 11(4): 1131-1140. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Zhuoheng XIE, Ziyang WANG, Gang ZHANG, Zhenning GU, Xiaolong SHI, Bin YAO. Experimental study on fire extinguishing of large-capacity ternary lithium-ion battery by perfluorohexanone and water mist fire extinguishing device [J]. Energy Storage Science and Technology, 2022, 11(2): 652-659. |
[6] | Yuyang LIU, Shunli WANG, Yanxin XIE, Weikang JI, Yixing ZHANG. Research on Li-ion battery modeling and SOC estimation based on online parameter identification and improved 2RC-PNGV model [J]. Energy Storage Science and Technology, 2021, 10(6): 2312-2317. |
[7] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
[8] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[9] | Yufeng XU, Jiabin YAN, Jianming HE, Zhengwei JU, Ge CHENG, Da ZHENG, Yinlong ZOU, Lei YE, Jianxin WANG. Integration and application of retried LIBs in photovoltaic and energy storage micro grid [J]. Energy Storage Science and Technology, 2021, 10(1): 349-354. |
[10] | Banghua DU, Yu ZHANG, Tiezhou WU, Yanlin HE, Zilong LI. An online identification method for equivalent model parameters of aging lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 342-348. |
[11] | Jingjing ZHANG, Xiaoling CUI, Dongni ZHAO, Li YANG, Jie WANG. Effects of concentrated electrolytes on the electrode /electrolyte interface [J]. Energy Storage Science and Technology, 2021, 10(1): 143-149. |
[12] | Wenxin MEI, Qiangling DUAN, Qingshan WANG, Yan LI, Xin LI, Jinda ZHU, Qingsong WANG. Thermal runaway simulation of large-scale lithium iron phosphate battery at elevated temperatures [J]. Energy Storage Science and Technology, 2021, 10(1): 202-209. |
[13] | Zhou JIN, Hailong YU, Wenwu ZHAO, Guangjin ZHAO, Xuejie HUANG. Graphite/nano-Sn composite anode materials for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 137-142. |
[14] | Shouding LI, Yan LI, Jie TIAN, Yuming ZHAO, Min YANG, Jun LUO, Yuancheng CAO, Shijie CHENG. Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications [J]. Energy Storage Science and Technology, 2020, 9(5): 1505-1516. |
[15] | Danfeng ZHANG, Jinhua SUN, Qingsong WANG. Effect of module structure on performance of phase change material based Li-ion battery thermal management system [J]. Energy Storage Science and Technology, 2020, 9(5): 1526-1539. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||