Energy Storage Science and Technology ›› 2016, Vol. 5 ›› Issue (3): 285-291.doi: 10.3969/j.issn.2095-4239.2016.03.004
Previous Articles Next Articles
ZHU Na, WU Feng, WU Chuan, BAI Ying, LI Yitong
Received:
2016-04-05
Revised:
2016-04-15
Online:
2016-05-01
Published:
2016-05-01
ZHU Na, WU Feng, WU Chuan, BAI Ying, LI Yitong. Recent advances of electrolytes for sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 285-291.
[1] 潘慧霖,王跃生,胡勇胜,等. 室温钠离子储能电池关键材料研究进展[J]. 新材料产业,2012(9): 22-30.
PAN Huilin,WANG Yuesheng,HU Yongsheng,et al. The research progress of key materials in sodium-ion battery for energy storage[J]. Advanced Materials Industry,2012,9:22-30.
[2] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Curr. Opin. Solid State Mater. Sci.,2012,16(4): 168-177.
[3] KIM S W,SEO D H,MA X,et al. Electrode materials for rechargeable sodium-ion batteries:Potential alternatives to current lithium-ion batteries[J]. Adv. Energy Mater.,2012,2(7): 710-721.
[4] ONG S P,CHEVRIER V L,HAUTIER G,et al. Voltage,stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy Environ. Sci.,2011,4(9): 3680-3688.
[5] 叶飞鹏,王莉,连芳,等. 钠离子电池研究进展[J]. 化工进展,2013(8): 1789-1795.
YE Feipeng,WANG Li,LIAN Fang,et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress,2013(8):1789-1795.
[6] JIAN Z,ZHAO L,PAN H,et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochem. Commun.,2012,14(1):86-89.
[7] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Adv. Funct. Mater.,2013,23(8):947-958.
[8] PALOMARES V,CASAS-CABANAS M,CASTILLO-MARTINEZ E,et al. Update on Na-based battery materials. A growing research path[J]. Energy Environ. Sci.,2013,6(8):2312-2337.
[9] 李慧,吴川,吴锋,等. 钠离子电池:储能电池的一种新选择[J]. 化学学报,2013,72:21-29.
LI Hui,WU Chuan,WU Feng,et al. Sodium ion battery:A promising energy-storage candidate for supporting renewable electricity[J]. Acta Chim. Sinica,2013,72:21-29.
[10] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ. Sci.,2011,4(9):3342-3345.
[11] DUNN B,KAMATH H,TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science,2011,334(6058):928-935.
[12] DIAZ-GONZALEZ F,SUPER A,GOMIS BELLMUNT O,et al. A review of energy storage technologies for wind power applications[J]. Renewable Sustainable Energy Rev.,2012,16(4):2154-2171.
[13] PONROUCH A. In search of an optimized electrolyte for Na-ion batteries[J]. Energy Environ. Sci.,2012,5(9):8572-8583.
[14] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Adv. Funct. Mater.,2011,21(20):3859-3867.
[15] DING J J,ZHOU Y N,SUN Q,et al. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries[J]. Electrochim. Acta,2013,87:388-393.
[16] AMRTHA B J,ANNA KATHARINA D,JUREN J,et al. Electrochemical stability of non-aqueouselectrolytes for sodium-ion batteries and theircompatibility with Na0.7CoO2[J]. Phys. Chem. Chem. Phys.,2013,16(5):1987-1998.
[17] JANG J Y,KIM H,LEE Y,et al. Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries[J]. Electrochem. Commun.,2014,44:74-77.
[18] KIM H,HONG J,PARK Y U,et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv. Func. Mater.,2015,25(4):534-541.
[19] KOMABA S,ISHIKAWA T,YABUUCHI N,et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Appl. Mater. Interfaces,2011,3(11):4165-4168.
[20] OH S M,MYUNG S T,YOON C S,et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage[J]. Nano Lett.,2014,14(3):1620-1626.
[21] 杨汉西,钱江锋. 水溶液钠离子电池及其关键材料的研究进展[J]. 无机材料学报,2013,28(11):1165-1171.
YANG Hanxi,QIAN Jiangfeng. Recent development of aqueous sodium ion batteries and their key materials[J]. Journal of Inorganic Materials,2013,28(11):1165-1171.
[22] WHITACRE J F,TEVAR A,SHARMA S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochem. Commun.,2010,12(3):463-466.
[23] WHITACRE J F,WILEY T,SHANBHAG S,et al. An aqueous electrolyte,sodium ion functional,large format energy storage device for stationary applications[J]. J. Power Sources,2012,213:255-264.
[24] WU X,CAO Y,AI X,et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry[J]. Electrochem. Commun.,2013,31:145-148.
[25] PARK S I,GOCHEVA I,OKADA S,et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. J. Electrochem. Soc.,2011,158(10):A1067-A1070.
[26] LI Z,YOUNG D,XIANG K,et al . Towards high power high energy aqueous sodium-ion batteries:The NaTi2(PO4)3/Na0.44MnO2 system[J]. Adv. Energy Mater.,2013,3(3):290-294.
[27] WESSELLS C D,PEDDADA S V,HUGGINS R A,et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Lett.,2011,11(12):5421-5425.
[28] WESSELLS C D,MCDOWELL M T,PEDDADA S V,et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage[J]. ACS Nano,2012,6(2):1688-1694.
[29] MONTI D,JONSSON E,PALACIN M R,et al. Ionic liquid based electrolytes for sodium-ion batteries:Na+ solvation and ionic conductivity[J]. J. Power Sources,2014,245:630-636.
[30] WONGITTHAROM N,WANG C H,WANG Y C,et al. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures[J]. ACS Appl. Mater. Interfaces,2014,6(20):17564-17570.
[31] WONGITTHAROM N,LEE T C,WANG C H,et al. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes[J]. J. Mater. Chem.,2014,2(16):5655-5661.
[32] WANG C H,YEH Y W,WONGITTHAROM N,et al. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes[J]. J. Power Sources,2015,274:1016-1023.
[33] SERRA MORENO J,MARESCA G,PANERO S,et al. Sodium-conducting ionic liquid-based electrolytes[J]. Electrochem. Commun.,2014,43:1-4.
[34] NIMAH Y L,CHENG M Y,JU H C,et al. Solid-state polymer nanocomposite electrolyte of TiO2PEONaClO4 for sodium ion batteries[J]. J. Power Sources,2015,278(278):375-381.
[35] BOSCHIN A,JOHANSSON P. Characterization of NaX(X=TFSI FSI) -PEO based solid polymer electrolytes for sodium batteries[J]. Electrochim. Acta,2015,175:124-133.
[36] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Structural and electrical properties of pure and NaBr doped poly(vinyl alcohol)(PVA) polymer electrolyte films for solid state battery applications[J]. Ionics,2007,13(6):441-446.
[37] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Structural,electrical and optical characterization of pure and doped poly(vinyl alcohol)(PVA) polymer electrolyte films[J]. Int. J. Polym. Mater.,2007,56(6):579-591.
[38] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications[J]. Curr. Appl. Phys.,2009,9(1):165-171.
[39] OSMAN Z,ISA K B M,AHMAD A,et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics,2010,16(16):431-435.
[40] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ. Sci.,2012,5(3):5884-5901.
[41] GUIN M,TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. J. Power Sources,2015,273:1056-1064.
[42] HONMA T,OKAMOTO M,TOGASHI T,et al. Electrical conductivity of Na2O-Nb2O5-P2O5 glass and fabrication of glass-ceramic composites with NASICON type Na3Zr2Si2PO12[J]. Solid State Ion., 2015,269:19-23.
[43] YANG Y Q,CHANG Z,LI M X,et al. A sodium ion conducting gel polymer electrolyte[J]. Solid State Ion.,2015,269:1-7.
[44] GAO H,GUO B,SONG J,et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Adv. Energy Mater.,2015, 5(9).
[45] KUMAR D,HASHMI S A. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. Solid State Ion.,2010,181(8):416-423.
,,,,,():
[1] 潘慧霖,王跃生,胡勇胜,等. 室温钠离子储能电池关键材料研究进展[J]. 新材料产业,2012(9): 22-30. PAN Huilin,WANG Yuesheng,HU Yongsheng,et al. The research progress of key materials in sodium-ion battery for energy storage[J]. Advanced Materials Industry,2012,9:22-30. [2] ELLIS B L,NAZAR L F. Sodium and sodium-ion energy storage batteries[J]. Curr. Opin. [3] KIM S W,SEO D H,MA X,et al. Electrode materials for rechargeable sodium-ion batteries:Potential alternatives to current lithium-ion batteries[J]. Adv. Energy Mater.,2012,2(7): 710-721. [4] ONG S P,CHEVRIER V L,HAUTIER G,et al. Voltage,stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials[J]. Energy Environ. Sci.,2011,4(9): 3680-3688. [5] 叶飞鹏,王莉,连芳,等. 钠离子电池研究进展[J]. 化工进展,2013(8): 1789-1795. YE Feipeng,WANG Li,LIAN Fang,et al. Advance in Na-ion batteries[J]. Chemical Industry and Engineering Progress,2013(8):1789-1795. [6] JIAN Z,ZHAO L,PAN H,et al. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries[J]. Electrochem. Commun.,2012,14(1):86-89. [7] SLATER M D,KIM D,LEE E,et al. Sodium-ion batteries[J]. Adv. Funct. Mater.,2013,23(8):947-958. [8] PALOMARES V,CASAS-CABANAS M,CASTILLO-MARTINEZ E,et al. Update on Na-based battery materials. A growing research path[J]. Energy Environ. Sci.,2013,6(8):2312-2337. [9] 李慧,吴川,吴锋,等. 钠离子电池:储能电池的一种新选择[J]. 化学学报,2013,72:21-29. LI Hui,WU Chuan,WU Feng,et al. Sodium ion battery:A promising energy-storage candidate for supporting renewable electricity[J]. Acta Chim. Sinica,2013,72:21-29. [10] WENZEL S,HARA T,JANEK J,et al. Room-temperature sodium-ion batteries:Improving the rate capability of carbon anode materials by templating strategies[J]. Energy Environ. Sci.,2011,4(9):3342-3345. [11] DUNN B,KAMATH H,TARASCON J M. Electrical energy storage for the grid:A battery of choices[J]. Science,2011,334(6058):928-935. [12] DIAZ-GONZALEZ F,SUPER A,GOMIS BELLMUNT O,et al. A review of energy storage technologies for wind power applications[J]. Renewable Sustainable Energy Rev.,2012,16(4):2154-2171. [13] PONROUCH A. In search of an optimized electrolyte for Na-ion batteries[J]. Energy Environ. Sci.,2012,5(9):8572-8583. [14] KOMABA S,MURATA W,ISHIKAWA T,et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Adv. Funct. Mater.,2011,21(20):3859-3867. [15] DING J J,ZHOU Y N,SUN Q,et al. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries[J]. Electrochim. Acta,2013,87:388-393. [16] AMRTHA B J,ANNA KATHARINA D,JUREN J,et al. Electrochemical stability of non-aqueouselectrolytes for sodium-ion batteries and theircompatibility with Na0.7CoO2[J]. Phys. Chem. Chem. Phys.,2013,16(5):1987-1998. [17] JANG J Y,KIM H,LEE Y,et al. Cyclic carbonate based-electrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7) cathodes for sodium-ion batteries[J]. Electrochem. Commun.,2014,44:74-77. [18] KIM H,HONG J,PARK Y U,et al. Sodium storage behavior in natural graphite using ether-based electrolyte systems[J]. Adv. Func. Mater.,2015,25(4):534-541. [19] KOMABA S,ISHIKAWA T,YABUUCHI N,et al. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Appl. Mater. Interfaces,2011,3(11):4165-4168. [20] OH S M,MYUNG S T,YOON C S,et al. Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using [21] 杨汉西,钱江锋. 水溶液钠离子电池及其关键材料的研究进展[J]. 无机材料学报,2013,28(11):1165-1171. YANG Hanxi,QIAN Jiangfeng. Recent development of aqueous sodium ion batteries and their key materials[J]. Journal of Inorganic Materials,2013,28(11):1165-1171. [22] WHITACRE J F,TEVAR A,SHARMA S. Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device[J]. Electrochem. Commun.,2010,12(3):463-466. [23] WHITACRE J F,WILEY T,SHANBHAG S,et al. An aqueous electrolyte,sodium ion functional,large format energy storage device for stationary applications[J]. J. Power Sources,2012,213:255-264. [24] WU X, [25] PARK S I,GOCHEVA I,OKADA S,et al. Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries[J]. J. Electrochem. Soc.,2011,158(10):A1067-A1070. [26] LI Z,YOUNG D,XIANG K,et al . Towards high power high energy aqueous sodium-ion batteries:The NaTi2(PO4)3/Na0.44MnO2 system[J]. Adv. Energy Mater.,2013,3(3):290-294. [27] WESSELLS C D,PEDDADA S V,HUGGINS R A,et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries[J]. Nano Lett.,2011,11(12):5421-5425. [28] WESSELLS C D,MCDOWELL M T,PEDDADA S V,et al. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage[J]. ACS Nano,2012,6(2):1688-1694. [29] MONTI D,JONSSON E,PALACIN M R,et al. Ionic liquid based electrolytes for sodium-ion batteries:Na+ solvation and ionic conductivity[J]. J. Power Sources,2014,245:630-636. [30] WONGITTHAROM N,WANG C H,WANG Y C,et al. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures[J]. ACS Appl. Mater. Interfaces,2014,6(20):17564-17570. [31] WONGITTHAROM N,LEE T C,WANG C H,et al. Electrochemical performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes[J]. J. Mater. Chem.,2014,2(16):5655-5661. [32] WANG C H,YEH Y W,WONGITTHAROM N,et al. Rechargeable Na/Na0.44MnO2 cells with ionic liquid electrolytes containing various sodium solutes[J]. J. Power Sources,2015,274:1016-1023. [33] SERRA MORENO J,MARESCA G,PANERO S,et al. Sodium-conducting ionic liquid-based electrolytes[J]. Electrochem. Commun.,2014,43:1-4. [34] NIMAH Y L,CHENG M Y,JU H C,et al. Solid-state polymer nanocomposite electrolyte of TiO2PEONaClO4 for sodium ion batteries[J]. J. Power Sources,2015,278(278):375-381. [35] BOSCHIN A,JOHANSSON P. Characterization of NaX(X=TFSI FSI) -PEO based solid polymer electrolytes for sodium batteries[J]. Electrochim. Acta,2015,175:124-133. [36] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Structural and electrical properties of pure and NaBr doped poly(vinyl alcohol)(PVA) polymer electrolyte films for solid state battery applications[J]. Ionics,2007,13(6):441-446. [37] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Structural,electrical and optical characterization of pure and doped poly(vinyl alcohol)(PVA) polymer electrolyte films[J]. Int. J. Polym. Mater.,2007,56(6):579-591. [38] BHARGAV P B,MOHAN V M,SHARMA A K,et al. Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications[J]. Curr. Appl. Phys.,2009,9(1):165-171. [39] OSMAN Z,ISA K B M,AHMAD A,et al. A comparative study of lithium and sodium salts in PAN-based ion conducting polymer electrolytes[J]. Ionics,2010,16(16):431-435. [40] PALOMARES V,SERRAS P,VILLALUENGA I,et al. Na-ion batteries,recent advances and present challenges to become low cost energy storage systems[J]. Energy Environ. Sci.,2012,5(3):5884-5901. [41] GUIN M,TIETZ F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries[J]. J. Power Sources,2015,273:1056-1064. [42] HONMA T,OKAMOTO M,TOGASHI T,et al. Electrical conductivity of Na2O-Nb2O5-P2O5 glass and fabrication of glass-ceramic composites with NASICON type Na3Zr2Si2PO12[J]. Solid State Ion., 2015,269:19-23. [43] YANG Y Q,CHANG Z,LI M X,et al. A sodium ion conducting gel polymer electrolyte[J]. [44] GAO H,GUO B,SONG J,et al. A composite gel-polymer/glass-fiber electrolyte for sodium-ion batteries[J]. Adv. Energy Mater.,2015, 5(9). [45] KUMAR D,HASHMI S A. Ionic liquid based sodium ion conducting gel polymer electrolytes[J]. [46] KUMAR D,HASHMI S A J. Ion transport and ion-filler-polymer interaction in poly(methylmethacrylate)-based,sodium ion conducting,gel polymer electrolytes dispersed with silica nanoparticles[J]. J. Power Sources,2010,195(15):5101-5108.
|
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Chaochao WEI, Chuang YU, Zhongkai WU, Linfeng PENG, Shijie CHENG, Jia XIE. Research progress of Li3PS4 solid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(5): 1368-1382. |
[3] | Zhicheng CHEN, Zongxu LI, Ling CAI, Yisi LIU. Development status and future prospects of flexible metal-air batteries [J]. Energy Storage Science and Technology, 2022, 11(5): 1401-1410. |
[4] | Liang FANG, Kai ZHANG, Limin ZHOU. Recent advances and prospects of electrolyte for aluminum ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1236-1245. |
[5] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[6] | Bowen YUE, Jiahuan TONG, Yuwen LIU, Feng HUO. Simulation calculation method and application of ionic liquid electrolyte [J]. Energy Storage Science and Technology, 2022, 11(3): 897-911. |
[7] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[8] | Shiwei DENG, Jianfang WU, Tuo SHI. Defect chemistry analysis of solid electrolytes: Point defects in grain bulk and grain boundary space-charge layer [J]. Energy Storage Science and Technology, 2022, 11(3): 939-947. |
[9] | Suting WENG, Zepeng LIU, Gaojing YANG, Simeng ZHANG, Xiao ZHANG, Qiu FANG, Yejing LI, Zhaoxiang WANG, Xuefeng WANG, Liquan CHEN. Cryogenic electron microscopy (cryo-EM) characterizing beam-sensitive materials in lithium metal batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 760-780. |
[10] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[11] | Dangling LIU, Shimin WANG, Zhihui GAO, Lufu XU, Shubiao XIA, Hong GUO. Properties of three-dimensional NZSPO/PAN-[PEO-NATFST] sodium-battery-composite solid electrolyte [J]. Energy Storage Science and Technology, 2021, 10(3): 931-937. |
[12] | Shangsen CHI, Yidong JIANG, Qingrong WANG, Ziwei YE, Kai YU, Jun MA, Jun JIN, Jun WANG, Chaoyang WANG, Zhaoyin WEN, Yonghong DENG. The liquid electrolyte modified interface between garnet-type solid-state electrolyte and lithium anode [J]. Energy Storage Science and Technology, 2021, 10(3): 914-924. |
[13] | Saisai ZHANG, Hailei ZHAO. Electrode/electrolyte interfaces in Li7La3Zr2O12 garnet-based solid-state lithium metal battery: Challenges and progress [J]. Energy Storage Science and Technology, 2021, 10(3): 863-871. |
[14] | Yanming CUI, Zhihua ZHANG, Yuanqiao HUANG, Jiu LIN, Xiayin YAO, Xiaoxiong XU. Prototype all-solid-state battery electrodes preparation and assembly technology [J]. Energy Storage Science and Technology, 2021, 10(3): 836-847. |
[15] | Jian TU, Xiongwen XU, Haibo HU, Yang NIE, Tao ZENG, Qiushi SUN, Hao CHENG, Jian XIE, Xinbing ZHAO. Fabrication of gel-type Li-ion batteries and their electrochemical and safety properties [J]. Energy Storage Science and Technology, 2021, 10(3): 1025-1031. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||