Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1407-1415.doi: 10.19799/j.cnki.2095-4239.2021.0036
• Energy Storage System and Engineering • Previous Articles Next Articles
Yifeng FENG1(), Jiani SHEN1, Haiying CHE1,2, Zifeng MA1,2, Yijun HE1(), Wen TAN3, Qingheng YANG3
Received:
2021-01-25
Revised:
2021-05-28
Online:
2021-07-05
Published:
2021-06-25
Contact:
Yijun HE
E-mail:headline@sjtu.edu.cn;heyijun@sjtu.edu.cn
CLC Number:
Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415.
1 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
2 | LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. |
3 | ZHAO C, WANG Q, YAO Z, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517): 708-711. |
4 | SENTHILKUMAR S T, ABIRAMI M, KIM J, et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications[J]. Journal of Power Sources, 2017, 341: 404-410. |
5 | CHE Haiying, YANG Xinrong, Yu Yan, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J].Green Energy& Environment, 2021(6): 212-219. |
6 | 车海英, 喻妍, 杨馨蓉, 等. 基于多氟代醚和碳酸酯共溶剂的钠离子电池电解液特性[J]. 储能科学与技术, 2020, 9(2): 392-399. |
CHE Haiying, YU Yan, YANG Xinrong, et al. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates[J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. | |
7 | SINKARAM C, RAJAKUMAR K, ASIRVADAM V. Modeling battery management system using the lithium-ion battery[C]//2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2012: 50-55. |
8 | RAMADASS P, HARAN B L, GOMADAM P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): doi: 10.1149/1.6634273. |
9 | 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. |
WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. | |
10 | ZHU Y, XU Y, LIU Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787. |
11 | HEUBNER C, HEIDEN S, MATTHEY B, et al. Sodiation vs. lithiation of FePO4: A comparative kinetic study[J]. Electrochimica Acta, 2016, 216: 412-419. |
12 | ZHANG L J, MU Z Q, SUN C Y. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018, 6: 17729-17740. |
13 | DUONG P L T, RAGHAVAN N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery[J]. Microelectronics Reliability, 2018, 81: 232-243. |
14 | MIAO Q, XIE L, CUI H J, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6): 805-810. |
15 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. |
16 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. |
17 | LIU D T, ZHOU J B, PAN D W, et al. Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning[J]. Measurement, 2015, 63: 143-151. |
18 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. |
19 | GAO M Y, LIU Y Y, HE Z W. Battery state of charge online estimation based on particle filter[C]//2011 4th International Congress on Image and Signal Processing, Shanghai, China, 2011: 2233-2236. |
20 | POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720. |
21 | HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92: 694-704. |
22 | PARTHIBAN T, RAVI R, KALAISELVI N. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells[J]. Electrochimica Acta, 2007, 53(4): 1877-1882. |
23 | PATTIPATI B, SANKAVARAM C, PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 41(6): 869-884. |
24 | WANG S, ZHAO L L, SU X H, et al. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies, 2014, 7(10): 6492-6508. |
25 | LIU D T, PANG J Y, ZHOU J B, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6): 832-839. |
26 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219. |
27 | LI L, WANG P, CHAO K H, et al. Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PLoS One, 2016, 11(9): doi: 10.1371/journal.pone.0163004. |
28 | HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600. |
29 | 韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383. |
WEI H Y, AN J J, CHEN J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383. | |
30 | SORENSON H W, ALSPACH D L. Recursive Bayesian estimation using Gaussian sums[J]. Automatica, 1971, 7(4): 465-479. |
31 | MALLAT S. A wavelet tour of signal processing: An approximation tour[M]. Amsterdam: Elsevier, 1999: 376-433. |
32 | RASMUSSEN C E. Advanced lectures on machine learning: Gaussian processes in machine learning[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 63-71. |
33 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. |
34 | SAHA B, GOEBEL K. Battery data set[J]. NASA AMES Prognostics Data Repository, 2007. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Jianhua YUAN, Yaping LIU, Ziwei ZHAO, Yu LIU, Binbin XIE, Baolin HE. SOC estimation of UAV lithium battery based on IGWO-PF algorithm [J]. Energy Storage Science and Technology, 2022, 11(5): 1601-1607. |
[3] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. |
[4] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[5] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[6] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. |
[7] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. |
[8] | Yunfei HAN, Jia XIE, Tao CAI, Shijie CHENG. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection [J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. |
[9] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[10] | Yanxin XIE, Shunli WANG, Weihao SHI, Xin XIONG, Xianpei CHEN. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation [J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. |
[11] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. |
[12] | Peng LI, Liwei LI, Yuxin YANG. Estimation of lithium-ion battery state of health based on IBOA-PF [J]. Energy Storage Science and Technology, 2021, 10(2): 705-713. |
[13] | Zheng CHEN, Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN. SOC estimation of aging lithium-ion battery based on a migration model [J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. |
[14] | Chao XU, Liwei LI, Yuxin YANG, Kai WANG. Lithium-ion battery SOH estimation based on improved particle filter [J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. |
[15] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||