Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (4): 1407-1415.doi: 10.19799/j.cnki.2095-4239.2021.0036
• Energy Storage System and Engineering • Previous Articles Next Articles
					
													Yifeng FENG1( ), Jiani SHEN1, Haiying CHE1,2, Zifeng MA1,2, Yijun HE1(
), Jiani SHEN1, Haiying CHE1,2, Zifeng MA1,2, Yijun HE1( ), Wen TAN3, Qingheng YANG3
), Wen TAN3, Qingheng YANG3
												  
						
						
						
					
				
Received:2021-01-25
															
							
																	Revised:2021-05-28
															
							
															
							
																	Online:2021-07-05
															
							
																	Published:2021-06-25
															
						Contact:
								Yijun HE   
																	E-mail:headline@sjtu.edu.cn;heyijun@sjtu.edu.cn
																					CLC Number:
Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415.
| 1 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池:从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. | 
| RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
| 2 | LIU T F, ZHANG Y P, JIANG Z G, et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage[J]. Energy & Environmental Science, 2019, 12(5): 1512-1533. | 
| 3 | ZHAO C, WANG Q, YAO Z, et al. Rational design of layered oxide materials for sodium-ion batteries[J]. Science, 2020, 370(6517): 708-711. | 
| 4 | SENTHILKUMAR S T, ABIRAMI M, KIM J, et al. Sodium-ion hybrid electrolyte battery for sustainable energy storage applications[J]. Journal of Power Sources, 2017, 341: 404-410. | 
| 5 | CHE Haiying, YANG Xinrong, Yu Yan, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J].Green Energy& Environment, 2021(6): 212-219. | 
| 6 | 车海英, 喻妍, 杨馨蓉, 等. 基于多氟代醚和碳酸酯共溶剂的钠离子电池电解液特性[J]. 储能科学与技术, 2020, 9(2): 392-399. | 
| CHE Haiying, YU Yan, YANG Xinrong, et al. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates[J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. | |
| 7 | SINKARAM C, RAJAKUMAR K, ASIRVADAM V. Modeling battery management system using the lithium-ion battery[C]//2012 IEEE International Conference on Control System, Computing and Engineering, Penang, Malaysia, 2012: 50-55. | 
| 8 | RAMADASS P, HARAN B L, GOMADAM P M, et al. Development of first principles capacity fade model for Li-ion cells[J]. Journal of the Electrochemical Society, 2004, 151(2): doi: 10.1149/1.6634273. | 
| 9 | 王其钰, 王朔, 周格, 等. 锂电池失效分析与研究进展[J]. 物理学报, 2018, 67(12): 279-290. | 
| WANG Q Y, WANG S, ZHOU G, et al. Progress on the failure analysis of lithium battery[J]. Acta Physica Sinica, 2018, 67(12): 279-290. | |
| 10 | ZHU Y, XU Y, LIU Y, et al. Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries[J]. Nanoscale, 2013, 5(2): 780-787. | 
| 11 | HEUBNER C, HEIDEN S, MATTHEY B, et al. Sodiation vs. lithiation of FePO4: A comparative kinetic study[J]. Electrochimica Acta, 2016, 216: 412-419. | 
| 12 | ZHANG L J, MU Z Q, SUN C Y. Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter[J]. IEEE Access, 2018, 6: 17729-17740. | 
| 13 | DUONG P L T, RAGHAVAN N. Heuristic Kalman optimized particle filter for remaining useful life prediction of lithium-ion battery[J]. Microelectronics Reliability, 2018, 81: 232-243. | 
| 14 | MIAO Q, XIE L, CUI H J, et al. Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6): 805-810. | 
| 15 | HU X S, XU L, LIN X K, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. | 
| 16 | NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239: 680-688. | 
| 17 | LIU D T, ZHOU J B, PAN D W, et al. Lithium-ion battery remaining useful life estimation with an optimized Relevance Vector Machine algorithm with incremental learning[J]. Measurement, 2015, 63: 143-151. | 
| 18 | ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. | 
| 19 | GAO M Y, LIU Y Y, HE Z W. Battery state of charge online estimation based on particle filter[C]//2011 4th International Congress on Image and Signal Processing, Shanghai, China, 2011: 2233-2236. | 
| 20 | POLA D A, NAVARRETE H F, ORCHARD M E, et al. Particle-filtering-based discharge time prognosis for lithium-ion batteries with a statistical characterization of use profiles[J]. IEEE Transactions on Reliability, 2015, 64(2): 710-720. | 
| 21 | HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92: 694-704. | 
| 22 | PARTHIBAN T, RAVI R, KALAISELVI N. Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells[J]. Electrochimica Acta, 2007, 53(4): 1877-1882. | 
| 23 | PATTIPATI B, SANKAVARAM C, PATTIPATI K. System identification and estimation framework for pivotal automotive battery management system characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 41(6): 869-884. | 
| 24 | WANG S, ZHAO L L, SU X H, et al. Prognostics of lithium-ion batteries based on battery performance analysis and flexible support vector regression[J]. Energies, 2014, 7(10): 6492-6508. | 
| 25 | LIU D T, PANG J Y, ZHOU J B, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6): 832-839. | 
| 26 | RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357: 209-219. | 
| 27 | LI L, WANG P, CHAO K H, et al. Remaining useful life prediction for lithium-ion batteries based on Gaussian processes mixture[J]. PLoS One, 2016, 11(9): doi: 10.1371/journal.pone.0163004. | 
| 28 | HE Y J, SHEN J N, SHEN J F, et al. State of health estimation of lithium-ion batteries: A multiscale Gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600. | 
| 29 | 韦海燕, 安晶晶, 陈静, 等. 基于改进粒子滤波算法实现锂离子电池RUL预测[J]. 汽车工程, 2019, 41(12): 1377-1383. | 
| WEI H Y, AN J J, CHEN J, et al. RUL prediction of lithium-ion battery based on improved particle filtering algorithm[J]. Automotive Engineering, 2019, 41(12): 1377-1383. | |
| 30 | SORENSON H W, ALSPACH D L. Recursive Bayesian estimation using Gaussian sums[J]. Automatica, 1971, 7(4): 465-479. | 
| 31 | MALLAT S. A wavelet tour of signal processing: An approximation tour[M]. Amsterdam: Elsevier, 1999: 376-433. | 
| 32 | RASMUSSEN C E. Advanced lectures on machine learning: Gaussian processes in machine learning[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004: 63-71. | 
| 33 | SEVERSON K A, ATTIA P M, JIN N, et al. Data-driven prediction of battery cycle life before capacity degradation[J]. Nature Energy, 2019, 4(5): 383-391. | 
| 34 | SAHA B, GOEBEL K. Battery data set[J]. NASA AMES Prognostics Data Repository, 2007. | 
| [1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. | 
| [2] | Jianhua YUAN, Yaping LIU, Ziwei ZHAO, Yu LIU, Binbin XIE, Baolin HE. SOC estimation of UAV lithium battery based on IGWO-PF algorithm [J]. Energy Storage Science and Technology, 2022, 11(5): 1601-1607. | 
| [3] | Yanwen DAI, Aiqing YU. Combined CNN-LSTM and GRU based health feature parameters for lithium-ion batteries SOH estimation [J]. Energy Storage Science and Technology, 2022, 11(5): 1641-1649. | 
| [4] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. | 
| [5] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. | 
| [6] | Fan WANG, Yongsheng SHI, Boqin LIU, Yujie ZUO, Zheng FU, Jamsher ALI. Health state estimation of lithium-ion batteries based on attention augmented BiGRU [J]. Energy Storage Science and Technology, 2021, 10(6): 2326-2333. | 
| [7] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. | 
| [8] | Yunfei HAN, Jia XIE, Tao CAI, Shijie CHENG. Capacity estimation of lithium-ion batteries based on Gaussian process regression and feature selection [J]. Energy Storage Science and Technology, 2021, 10(4): 1432-1438. | 
| [9] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. | 
| [10] | Yanxin XIE, Shunli WANG, Weihao SHI, Xin XIONG, Xianpei CHEN. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation [J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. | 
| [11] | Pu REN, Shunli WANG, Mingfang HE, Yongcun FAN, Wen CAO, Wei XIE. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading [J]. Energy Storage Science and Technology, 2021, 10(2): 738-743. | 
| [12] | Peng LI, Liwei LI, Yuxin YANG. Estimation of lithium-ion battery state of health based on IBOA-PF [J]. Energy Storage Science and Technology, 2021, 10(2): 705-713. | 
| [13] | Zheng CHEN, Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN. SOC estimation of aging lithium-ion battery based on a migration model [J]. Energy Storage Science and Technology, 2021, 10(1): 326-334. | 
| [14] | Chao XU, Liwei LI, Yuxin YANG, Kai WANG. Lithium-ion battery SOH estimation based on improved particle filter [J]. Energy Storage Science and Technology, 2020, 9(6): 1954-1960. | 
| [15] | Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||
