Energy Storage Science and Technology ›› 2021, Vol. 10 ›› Issue (1): 326-334.doi: 10.19799/j.cnki.2095-4239.2020.0288
• Energy Storage System and Engineering • Previous Articles Next Articles
Zheng CHEN(), Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN()
Received:
2020-08-27
Revised:
2020-09-09
Online:
2021-01-05
Published:
2021-01-08
CLC Number:
Zheng CHEN, Guangda ZHAO, Shiquan SHEN, Xing SHU, Jiangwei SHEN. SOC estimation of aging lithium-ion battery based on a migration model[J]. Energy Storage Science and Technology, 2021, 10(1): 326-334.
1 | XIONG Rui, PAN Yue, SHEN Weixiang, et al. Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives[J]. Renewable Sustainable Energy Reviews, 2020, 131: doi: 10.1016/j.rser.2020.110048. |
2 | HANNAN M A, LIPU M S H, HUSSAIN A, et al. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations[J]. Renewable Sustainable Energy Reviews, 2017, 78: 834-854. |
3 | PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs (III): State and parameter estimation[J]. Journal of Power Sources, 2004, 134(2): 277-292. |
4 | SHEN Yanqing. Adaptive extended Kalman filter based state of charge determination for lithium-ion batteries[J]. Electrochimica Acta, 2018, 283: 1432-1440. |
5 | 田茂飞, 安治国, 陈星, 等. 基于在线参数辨识和AEKF的锂电池SOC估计[J]. 储能科学与技术, 2019, 8(4): 745-750. |
TIAN Maofei, AN Zhiguo, CHEN Xing, et al. SOC estimation of lithium battery based online parameter identification and AEKF[J]. Energy Storage Science and Technology, 2019, 8(4): 745-750. | |
6 | EL DIN M S, HUSSEIN A A, ABDEL-HAFEZ M F. Improved battery SOC estimation accuracy using a modified UKF with an adaptive cell model under real EV operating conditions[J]. IEEE Transactions on Transportation Electrification, 2018, 4(2): 408-417. |
7 | SHRIVASTAVA P, SOON T K, IDRIS M Y, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries[J]. Renewable Sustainable Energy Reviews, 2019, 113: doi: 10.1016/j.rser.2019.06.040. |
8 | XIAO Renxin, SHEN Jiangwei, LI Xiaoyu, et al. Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods[J]. Energies, 2016, 9(3): doi: 10.3390/en9030184. |
9 | PILLER S, PERRIN M, JOSSEN A. Methods for state-of-charge determination and their applications[J]. Journal of Power Sources, 2001, 96(1): 113-120. |
10 | GARG A, SHAOSEN S, GAO L, et al. Aging model development based on multidisciplinary parameters for lithium-ion batteries[J]. International Journal of Energy Research, 2020, 44(4): 2801-2818. |
11 | SHU Xing, LI Guang, SHEN Jiangwei, et al. An adaptive multi-state estimation algorithm for lithium-ion batteries incorporating temperature compensation[J]. Energy, 2020: doi: 10.1016/j.energy.2020.118262. |
12 | CHEN Zheng, XIAO Jiapeng, SHU Xing, et al. Model-based adaptive joint estimation of the state of charge and capacity for lithium-ion batteries in their entire lifespan[J]. Energies, 2020, 13(6): doi: 10.3390/en13061410. |
13 | TANG Xiaopeng, WANG Yujie, ZOU Changfu, et al. A novel framework for lithium-ion battery modeling considering uncertainties of temperature and aging[J]. Energy Conversion, 2019, 180: 162-170. |
14 | PUGALENTHI K, RAGHAVAN N. A holistic comparison of the different resampling algorithms for particle filter based prognosis using lithium ion batteries as a case study[J]. Microelectronics Reliability, 2018, 91: 160-169. |
15 | 张禹轩. 电动汽车动力电池模型参数在线辨识及SOC估计[D]. 长春: 吉林大学, 2014. |
16 | LAI Xin, WANG Shuyu, MA Shangde, et al. Parameter sensitivity analysis and simplification of equivalent circuit model for the state of charge of lithium-ion batteries[J]. Electrochimica Acta, 2020, 330: doi: 10.1016/j.electacta.2019.135239. |
17 | CHEN Zheng, XUE Qiao, XIAO Renxin, et al. State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and elman neural network[J]. IEEE Access, 2019, 7: 102662-102678. |
18 | GOMEZ J, NELSON R, KALU E E, et al. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of Power Sources, 2011, 196(10): 4826-4831. |
19 | HAN Xuebing, OUYANG Minggao, LU Languang, et al. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54. |
20 | SADHU S, BHAUMIK S, DOUCET A, et al. Particle-method-based formulation of risk-sensitive filter[J]. Signal Processing, 2009, 89(3): 314-319. |
21 | JIN L W, LEE P S, KONG X X, et al. Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113: 1786-1794. |
[1] | Tian WU, Mincheng LIN, Hao HAI, Haiyu SUN, Zhaoyin WEN, Fuyuan MA. Development of high-power Ni-MH battery system for primary frequency modulation [J]. Energy Storage Science and Technology, 2022, 11(7): 2213-2221. |
[2] | Feng TIAN, Zhijiang CHENG, Handi YANG, Tianxiang YANG. Fault-tolerant control strategy for modular multi-level hybrid converter battery energy storage system [J]. Energy Storage Science and Technology, 2022, 11(5): 1583-1591. |
[3] | Chunhui LIU, Hongbin REN. Research on active equalization of power batteries based on state of charge [J]. Energy Storage Science and Technology, 2022, 11(2): 667-672. |
[4] | Pengchao HUANG, Jiaqiang E. State estimation of lithium-ion battery based on dual adaptive Kalman filter [J]. Energy Storage Science and Technology, 2022, 11(2): 660-666. |
[5] | Shuai WANG, Hongyan MA, Jiaming DOU, Yingda ZHANG, Shengyan LI, Lujin HU. Estimation of lithium-ion battery state of charge based on UGOA-BP [J]. Energy Storage Science and Technology, 2022, 11(1): 258-264. |
[6] | Xiaozhi GAO, Lei WANG, Jin TIAN, Jialu LIU, Qinghua LIU. Research on hybrid energy storage power distribution strategy based on parameter optimization variational mode decomposition [J]. Energy Storage Science and Technology, 2022, 11(1): 147-155. |
[7] | Yongqiang ZHENG, Yue WU, Panpan ZHANG, Bo LEI, Yaodong ZHENG. Research on collaborative control strategy for simultaneous decommissioning based on multi-branch PCS topology of ESS using second-life EV batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2283-2292. |
[8] | Hang SU, Huaibin GAO, Zhengguang LI, Hongjun LI, Jianfei LIU, Xiaobo ZUO, Linlin JI. State of charge estimation of Li-ion battery based on BCRLS-ACKF [J]. Energy Storage Science and Technology, 2021, 10(6): 2334-2341. |
[9] | Linxuan HE, Wenyan LI. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. |
[10] | Bin LI, Lei XU, Zheng ZHENG, Dandan HU, Guobin ZHANG. Multiple staggered symmetric equalization scheme based on Cuk circuits [J]. Energy Storage Science and Technology, 2021, 10(4): 1400-1406. |
[11] | Xiaoli ZHANG, Yuetong WANG, Jinsong XIA, Yingying ZHANG. Estimation of the SOC of lithium batteries based on an improved CDKF algorithm [J]. Energy Storage Science and Technology, 2021, 10(4): 1454-1462. |
[12] | Chengxin SHAN, Liwei LI, Yuxin YANG. SOC of estimation of lithium battery based on IACO-PF [J]. Energy Storage Science and Technology, 2021, 10(3): 1145-1152. |
[13] | Ke LI, Juyi MU, Yi JIN, Jiajia XU, Pengjie LIU, Qingsong WANG, Huang LI. Fire risk of lithium iron phosphate battery [J]. Energy Storage Science and Technology, 2021, 10(3): 1177-1186. |
[14] | Yanxin XIE, Shunli WANG, Weihao SHI, Xin XIONG, Xianpei CHEN. A new method of unscented particle filter for high-fidelity lithium-ion battery SOC estimation [J]. Energy Storage Science and Technology, 2021, 10(2): 722-731. |
[15] | Qiao WANG, Meng WEI, Min YE, Jiabo LI, Xinxin XU. Estimation of lithium-ion battery SOC based on GWO-optimized extreme learning machine [J]. Energy Storage Science and Technology, 2021, 10(2): 744-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||