Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1383-1395.doi: 10.19799/j.cnki.2095-4239.2020.0220
Previous Articles Next Articles
Siyu ZHOU(), Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG()
Received:
2020-06-19
Revised:
2020-07-03
Online:
2020-09-05
Published:
2020-09-08
Contact:
Haiyan WANG
E-mail:1282068071@qq.com;wanghy419@csu.edu.cn
CLC Number:
Siyu ZHOU, Zheng TANG, Jingrui FAN, Yougen TANG, Dan SUN, Haiyan WANG. Research progress of transition metal oxide micro-nano structured arrays for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1383-1395.
1 | CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
2 | PAN H, HU Y S, CHEN L Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360. |
3 | XIANG X, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364. |
4 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chem. Soc. Rev., 2017, 46(12): 3529-3614. |
5 |
LOAIZA L C, MONCONDUIT L, SEZNEC V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: A perspective from structure to electrochemical mechanism[J]. Small, 2020, doi: 10.1002/smll.201905260.
doi: 10.1002/smll.201905260 |
6 | KLEIN F, JACHE B, BHIDE A, et al. Conversion reactions for sodium-ion batteries[J]. Phys. Chem. Chem. Phys., 2013, 15(38): 15876-15887. |
7 | MEI J, LIAO T, SPRATT H, et al. Honeycomb-inspired heterogeneous bimetallic Co-Mo oxide nanoarchitectures for high-rate electrochemical lithium storage[J]. Small Methods, 2019, 3(5): doi: 10.1002/smtd.201900055. |
8 | CHEN Z, GAO Y, ZHANG Q, et al. TiO2/NiO/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries[J]. Journal of Alloys and Compounds, 2019, 774: 873-878. |
9 | KOLMAKOV A, KLENOV D O, LILACH Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles[J]. Nano Letters, 2005, 5(4): 667-673. |
10 | CHOI J S, KIM J H, KIM S H, et al. Nonvolatile memory device based on the switching by the all-organic charge transfer complex[J]. Applied Physics Letters, 2006, 89(15): doi: 10.1063/1.2360220. |
11 | LI Y B, BANDO Y, GOLBERG D, et al. Field emission from MoO3 nanobelts[J]. Applied Physics Letters, 2002, 81(26): 5048-5050. |
12 | POIZOT P, LARUELLE S, GRUGEON S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 6803(407): 496-499. |
13 | ZHANG P, GUO S, LIU J, et al. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 563: 318-327. |
14 | WANG M, WANG X, YAO Z, et al. SnO2 nanoflake arrays coated with polypyrrole on a carbon cloth as flexible anodes for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24198-24204. |
15 | MELIGRANA G, LUEANGCHAICHAWENG W, COLÒ F, et al. Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries[J]. Electrochimica Acta, 2017, 235: 143-149. |
16 | LIANG S, CHENG Y J, ZHU J, et al. A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes[J]. Small Methods, 2020: doi: 10.1002/smtd.202000218. |
17 |
WEI S, WANG C, CHEN S, et al. Dial the mechanism switch of VN from conversion to intercalation toward long cycling sodium-ion battery[J]. Advanced Energy Materials, 2020, doi: 10.1002/aenm.201903712.
doi: 10.1002/aenm.201903712 |
18 | YU Z, WANG J, WANG L, et al. Unraveling the origins of the “Unreactive Core” in conversion electrodes to trigger high sodium-ion electrochemistry[J]. ACS Energy Letters, 2019, 4(8): 2007-2012. |
19 | ALCÁNTARA R, JARABA M, LAVELA P, et al. NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries[J]. Chemistry of Materials, 2002, 14(7): 2847-2848. |
20 | MINAKSHI M, BARMI M, MITCHELL D R G, et al. Effect of oxidizer in the synthesis of NiO anchored nanostructure nickel molybdate for sodium-ion battery[J]. Materials Today Energy, 2018, 10: 1-14. |
21 | LI Y, ZHANG M, QIAN J, et al. Freestanding N-doped carbon coated CuO array anode for lithium-ion and sodium-ion batteries[J]. Energy Technology, 2019, 7(7): doi: 10.1002/ente.201900252. |
22 | ZHAN J, WU K, YU X, et al. α-Fe2O3 nanoparticles decorated C@MoS2 nanosheet arrays with expanded spacing of (002) plane for ultrafast and high Li/Na-ion storage[J]. Small, 2019, 15(21): doi: 10.1002/smll201901083. |
23 | ZHAO Y J, WANG F X, WANG C, et al. Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries[J]. Nano Energy, 2019, 56: 426-433. |
24 | WU K, GENG B, ZHANG C, et al. Hierarchical porous arrays of mesoporous Co3O4 nanosheets grown on graphene skin for high-rate and high-capacity energy storage[J]. Journal of Alloys and Compounds, 2020, 820: doi: 10.1016/j.jallcom.2019.153296. |
25 | ZHANG P, GUO S, LIU J, et al. Highly uniform nitrogen-doped carbon decorated MoO2 nanopopcorns as anode for high-performance lithium/sodium-ion storage[J]. Journal of Colloid and Interface Science, 2020, 563: 318-327. |
26 | MIERNICKI M, HOFMANN T, EISENBERGER I, et al. Legal and practical challenges in classifying nanomaterials according to regulatory definitions[J]. Nature Nanotechnology, 2019, 14(3): 208-216. |
27 | LIU K, DING F, LU Q W, et al. A novel plastic crystal composite polymer electrolyte with excellent mechanical bendability and electrochemical performance for flexible lithium-ion batteries[J]. Solid State Ionics, 2016, 289: 1-8. |
28 | LI Y Q, LI J C, LANG X Y, et al. Lithium ion breathable electrodes with 3D hierarchical architecture for ultrastable and high-capacity lithium storage[J]. Advanced Functional Materials, 2017, 27(29): doi: 10.1002adfm.201700447. |
29 | TONG X, XIA X, GUO C, et al. Efficient oxygen reduction reaction using mesoporous Ni-doped Co3O4 nanowire array electrocatalysts[J]. Journal of Materials Chemistry A, 2015, 3(36): 18372-18379. |
30 | SUN Y, LEE H W, SEH Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): doi: 10.1038/nenergy.2015.8. |
31 | GU M, KUSHIMA A, SHAO Y, et al. Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries[J]. Nano Lett., 2013, 13(11): doi: 10.1021/nl402633n. |
32 | KOVALENKO I, ZDYRKO B, MAGASINSKI A, et al. A major constituent of brown algae for use in high-capacity Li-ion batteries[J]. Science, 2011, 0052(334): 75-79. |
33 | HE H N, SUN D, TANG Y G, et al. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries[J]. Energy Storage Materials, 2019, 23: 233-251. |
34 | WU C, DOU S X, YU Y. The state and challenges of anode materials based on conversion reactions for sodium storage[J]. Small, 2018, 14(22): doi: 10.1002/smll.201703671. |
35 | HU R, CHEN D, WALLER G, et al. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity[J]. Energy & Environmental Science, 2016, 9(2): 595-603. |
36 | TIAN R, BRESHEARS M, HORVATH D V, et al. The rate performance of two-dimensional material-based battery electrodes may not be as good as commonly believed[J]. ACS Nano, 2020, 14(3): 3129-3140. |
37 | HE K, LIN F, ZHU Y, et al. Sodiation kinetics of metal oxide conversion electrodes: A comparative study with lithiation[J]. Nano Letters, 2015, 15(9): 5755-5763. |
38 | KIM H, KIM H, KIM H, et al. Understanding origin of voltage hysteresis in conversion reaction for na rechargeable batteries: The case of cobalt oxides[J]. Advanced Functional Materials, 2016, 26(28): 5042-5050. |
39 | WANG J, WANG L, ENG C, et al. Elucidating the irreversible mechanism and voltage hysteresis in conversion reaction for high-energy sodium-metal sulfide batteries[J]. Advanced Energy Materials, 2017, 7(14): doi: 10.1002/aenm.201602706. |
40 | NI J F, LI L. Self-supported 3D array electrodes for sodium microbatteries[J]. Advanced Functional Materials, 2018, 28(3): doi: 10.1002/adfm.201704880. |
41 | LEI D, ZHANG M, QU B, et al. α-Fe2O3 nanowall arrays: Hydrothermal preparation, growth mechanism and excellent rate performances for lithium ion batteries[J]. Nanoscale, 2012, 4(11): 3422-3426. |
42 | WU D, WANG C, WU M, et al. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage[J]. Journal of Energy Chemistry, 2020, 43: 24-32. |
43 | HAO J, LIU X, LIU X, et al. Ionic liquid electrodeposition of Ge nanostructures on freestanding Ni-nanocone arrays for Li-ion battery[J]. RSC Advances, 2015, 5(25): 19596-19600. |
44 | REN W, WANG C, LU L, et al. SnO2@Si core-shell nanowire arrays on carbon cloth as a flexible anode for Li ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(43): 13433-13438. |
45 | WANG K X, LI Y, WU X Y, et al. Carbon nanocolumn arrays prepared by pulsed laser deposition for lithium ion batteries[J]. Journal of Power Sources, 2012, 203: 140-144. |
46 | LYTLE J C, YAN H, ERGANG N S, et al. Structural and electrochemical properties of three-dimensionally ordered macroporous tin(iv) oxide films[J]. Journal of Materials Chemistry, 2004, 14(10): 1616-1622. |
47 | SAKAMOTO J S, DUNN B. Hierarchical battery electrodes based on inverted opal structures[J]. Journal of Materials Chemistry, 2002, 12(10): 2859-2861. |
48 | ZHANG H, YU X, BRAUN P V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes[J]. Nat. Nanotechnol, 2011, 6(5): 277-81. |
49 | LEE Y H, LEU I C, LIAO C L, et al. Fabrication and characterization of Cu2O nanorod arrays and their electrochemical performance in Li-ion batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(4): A207-A210. |
50 | ZHANG Y, LIM Y V, HUANG S, et al. Tailoring NiO nanostructured arrays by sulfate anions for sodium-ion batteries[J]. Small, 2018, 14(28): doi: 10.1002/smll.201800898. |
51 | YUAN S, HUANG X L, MA D L, et al. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode[J]. Adv. Mater., 2014, 26(14): 2273-2279. |
52 | ELLIS B L, KNAUTH P, DJENIZIAN T. Three-dimensional self-supported metal oxides for advanced energy storage[J]. Adv. Mater., 2014, 26(21): 3368-3397. |
53 | NI J, JIANG Y, WU F, et al. Regulation of breathing CuO nanoarray electrodes for enhanced electrochemical sodium storage[J]. Advanced Functional Materials, 2018, 28(15): doi: 10.1002/adfm.201707179. |
54 | XIA X, CHAO D, ZHANG Y, et al. Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium-ion storage[J]. Small, 2016, 12(22): 3048-3058. |
55 | CHEN M, CHAO D, LIU J, et al. Rapid pseudocapacitive sodium-ion response induced by 2D ultrathin Tin monoxide nanoarrays[J]. Advanced Functional Materials, 2017, 27(12): doi: 10.1002/adfm.201606232. |
56 | LI Y, TAN B, WU Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability[J]. Nano Letters, 2008, 8(1): 265-270. |
57 | XIA X, DENG S, XIE D, et al. Boosting sodium ion storage by anchoring MoO2 on vertical graphene arrays[J]. Journal of Materials Chemistry A, 2018, 6(32): 15546-15552. |
58 | ZHU J, DENG D. Uniform distribution of 1-D SnO2 nanorod arrays anchored on 2-D graphene sheets for reversible sodium storage[J]. Chemical Engineering Science, 2016, 154: 54-60. |
59 | NI J, FU S, YUAN Y, et al. Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation[J]. Adv. Mater., 2018, 30(6): doi: 10.1002/adma.201704337. |
60 | XU Y, ZHOU M, WEN L, et al. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes[J]. Chemistry of Materials, 2015, 27(12): 4274-4280. |
61 | BIAN H, XIAO X, ZENG S, et al. Mesoporous C-coated SnOx nanosheets on copper foil as flexible and binder-free anodes for superior sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(5): 2243-2250. |
62 | WU K, ZHAN J, XU G, et al. MoO3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries[J]. Nanoscale, 2018, 10(34): 16040-16049. |
63 | ZHAO Y, ZHANG W B, ZHAO Z Y, et al. Synthesis and evaluation of three-dimensional nickel molybdate nano-sheets on nickel foam as self-supported electrodes for sodium-ion hybrid capacitors[J]. Materials Research Express, 2018, 5(6): doi: 10.1088/2053-1591/aac466. |
64 | OU X, LI J, ZHENG F, et al. In situ X-ray diffraction characterization of NiSe2 as a promising anode material for sodium ion batteries[J]. Journal of Power Sources, 2017, 343: 483-491. |
65 | XIE X, KRETSCHMER K, ZHANG J, et al. Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries[J]. Nano Energy, 2015, 13: 208-217. |
66 | NI J, WANG G, YANG J, et al. Carbon nanotube-wired and oxygen-deficient MoO3 nanobelts with enhanced lithium-storage capability[J]. Journal of Power Sources, 2014, 247: 90-94. |
67 | LI X, HUANG Y, WANG J, et al. High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery[J]. Journal of Materials Chemistry A, 2018, 6(4): 1390-1396. |
68 | WANG H, LI W, FEI H, et al. Facile hydrothermal growth of VO2 nanowire, nanorod and nanosheet arrays as binder free cathode materials for sodium batteries[J]. RSC Advances, 2016, 6(17): 14314-14320. |
69 | WANG H, GAO X, FENG J, et al. Nanostructured V2O5 arrays on metal substrate as binder free cathode materials for sodium-ion batteries[J]. Electrochimica Acta, 2015, 182: 769-774. |
70 | LIU F, CHEN Z, FANG G, et al. V2O5 Nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode[J]. Nano-Micro Letters, 2019, 11(1): doi: 10.1007/s40820-019-0256-2. |
71 | ZHANG Y, LIU C, GAO X, et al. Revealing the activation effects of high valence cobalt in CoMoO4 towards highly reversible conversion[J]. Nano Energy, 2020, 68: doi: 10.1016/j.nanoen.2019.104333. |
72 | JIN Q, WANG K, FENG P, et al. Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries[J]. Energy Storage Materials, 2020, 27: 43-50. |
73 | GAO Y, ZHANG J, LI N, et al. Design principles of pseudocapacitive carbon anode materials for ultrafast sodium and potassium-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(16): 7756-7764. |
74 | SUN Q, CAO Z, WANG S, et al. Bio-inspired heteroatom-doped hollow aurilave-like structured carbon for high-performance sodium-ion batteries and supercapacitors[J]. Journal of Power Sources, 2020, 461: doi: 10.1016/j.jpowsour.2020.228128. |
75 | KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
76 | XU J, WANG M, WICKRAMARATNE N P, et al. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams[J]. Adv. Mater., 2015, 27(12): 2042-2048. |
77 | NI J, FU S, WU C, et al. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage[J]. Adv. Mater., 2016, 28(11): 2259-2265. |
78 | HAWKINS C G, WHITTAKER-BROOKS L. Vertically oriented TiS2-x nanobelt arrays as binder- and carbon-free intercalation electrodes for Li- and Na-based energy storage devices[J]. Journal of Materials Chemistry A, 2018, 6(44): 21949-21960. |
79 | UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters, 2002, 81(3): 454-456. |
80 | FU S, NI J, XU Y, et al. Hydrogenation driven conductive Na2Ti3O7 nanoarrays as robust binder-free anodes for sodium-ion batteries[J]. Nano Lett., 2016, 16(7): 4544-4551. |
81 | WANG W, WU M, HAN P, et al. Understanding the behavior and mechanism of oxygen-deficient anatase TiO2 toward sodium storage[J]. ACS Appl. Mater. Interfaces, 2019, 11(3): 3061-3069. |
82 | AUGUSTYN V, COME J, LOWE M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nat. Mater., 2013, 12(6): 518-22. |
83 | LIM E, JO C, KIM M S, et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites[J]. Advanced Functional Materials, 2016, 26(21): 3711-3719. |
84 | NI J, WANG W, WU C, et al. Highly reversible and durable na storage in niobium pentoxide through optimizing structure, composition, and nanoarchitecture[J]. Adv. Mater., 2017, 29(9): doi: 10.1002/adma.201605607. |
85 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1351-1355. |
86 | LIAO J Y, LUNA B D, MANTHIRAM A. TiO2-B nanowire arrays coated with layered MoS2 nanosheets for lithium and sodium storage[J]. Journal of Materials Chemistry A, 2016, 4(3): 801-806. |
87 | KONG D, CHENG C, WANG Y, et al. Fe3O4 quantum dot decorated MoS2 nanosheet arrays on graphite paper as free-standing sodium-ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(19): 9122-9131. |
88 | ZHOU M, XU Y, LEI Y. Heterogeneous nanostructure array for electrochemical energy conversion and storage[J]. Nano Today, 2018, 20: 33-57. |
89 | WU J B, LI Z G, HUANG X H, et al. Porous Co3O4/NiO core/shell nanowire array with enhanced catalytic activity for methanol electro-oxidation[J]. Journal of Power Sources, 2013, 224: 1-5. |
90 | TANG J, NI S, CHEN Q, et al. The electrochemical performance of NiO nanowalls/Ni anode in half-cell and full-cell sodium ion batteries[J]. Materials Letters, 2017, 195: 127-130. |
91 | ZHANG W, CAO P, LI L, et al. Carbon-encapsulated 1D SnO2/NiO heterojunction hollow nanotubes as high-performance anodes for sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 348: 599-607. |
92 | CHANG L, WANG K, HUANG L, et al. Hierarchically porous CoNiO2 nanosheet array films with superior sodium storage performance[J]. New Journal of Chemistry, 2017, 41(23): 14072-14075. |
93 | ZHAO D, XIE D, LIU H, et al. Flexible α-Fe2O3 nanorod electrode materials for sodium-ion batteries with excellent cycle performance[J]. Functional Materials Letters, 2018, 11(6): doi: 10.1142/S1793604718400027. |
94 | CHEN Y, YUAN X, YANG C, et al. γ-Fe2O3 nanoparticles embedded in porous carbon fibers as binder-free anodes for high-performance lithium and sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 777: 127-134. |
95 | LIU S, WANG Y, DONG Y, et al. Ultrafine Fe3O4 quantum dots on hybrid carbon nanosheets for long-life, high-rate alkali-metal storage[J]. ChemElectroChem, 2016, 3(1): 38-44. |
96 | JIANG J, MA C, MA T, et al. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries[J]. Journal of Alloys and Compounds, 2019, 794: 385-395. |
97 | WANG Z, ZHANG S, YUE L, et al. Synthesis of Co3O4 nanocubes/CNTs composite with enhanced sodium storage performance[J]. Solid State Ionics, 2017, 312: 32-37. |
98 | LIU J, DAI J, HUANG L, et al. Flexible and binder-free electrospun Co3O4 nanoparticles/carbon composite nanofiber mats as negative electrodes for sodium-ion batteries[J]. Functional Materials Letters, 2018, 11(4): doi: 10.1142/S1793604718500728. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[3] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[4] | Zhiqiang ZHAO, Hengjun LIU, Xixiang XU, Yuanyuan PAN, Qinghao LI, Hongsen LI, Han HU, Qiang LI. Magnetometry technique in energy storage science [J]. Energy Storage Science and Technology, 2022, 11(3): 818-833. |
[5] | Yifeng FENG, Jiani SHEN, Haiying CHE, Zifeng MA, Yijun HE, Wen TAN, Qingheng YANG. State of health prediction for sodium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415. |
[6] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[7] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[8] | CHE Haiying, YU Yan, YANG Xinrong, LIAO Xiaozhen, LI Linsen, DENG Yonghong, MA Zifeng. Behavior of sodium-ion battery electrolytes based on the co-solvents of polyfluorinated ether and organic carbonates [J]. Energy Storage Science and Technology, 2020, 9(2): 392-399. |
[9] | TIAN Liyuan, JU Xiaoxia, XIANG Feng, ZHOU Ming. Recent research progress of metal compounds as anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2018, 7(6): 1211-1216. |
[10] | ZHU Na, WU Feng, WU Chuan, BAI Ying, LI Yitong. Recent advances of electrolytes for sodium-ion batteries [J]. Energy Storage Science and Technology, 2016, 5(3): 285-291. |
[11] | JIN Yuhong, WANG Li, SHANG Yuming, GAO Jian, LI Jianjun, HE Xiangming. Development of spinel NiCo2O4 nanostructure material for application in supercapacitors [J]. Energy Storage Science and Technology, 2015, 4(1): 44-54. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||