Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1370-1382.doi: 10.19799/j.cnki.2095-4239.2020.0180
Previous Articles Next Articles
Linfeng PENG1,2(), Huanhuan JIA1,3, Qing DING4, Yuming ZHAO4, Jia XIE1(), Shijie CHENG1
Received:
2020-05-17
Revised:
2020-06-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Jia XIE
E-mail:511574845@qq.com;xiejia@hust.edu.cn
CLC Number:
Linfeng PENG, Huanhuan JIA, Qing DING, Yuming ZHAO, Jia XIE, Shijie CHENG. Research progress of solid-state sodium batteries using inorganic sodium ion conductors[J]. Energy Storage Science and Technology, 2020, 9(5): 1370-1382.
1 | ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nature Reviews Materials, 2020, 5: 229-252. |
2 | NITTA N, WU F, LEE J T, et al. Li-ion battery materials: Present and future[J]. Materials Today, 2015, 18(5): 252-264. |
3 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
4 | SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries[J]. Advanced Functional Materials, 2013, 23(8): 947-958. |
5 | CHAYAMBUKA K, MULDER G, DANILOV D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm.201800079. |
6 | KUNDU D, TALAIE E, DUFFORT V, et al. The emerging chemistry of sodium ion batteries for electrochemical energy storage[J]. Angewandte Chemie-International Edition, 2015, 54(11): 3431-3448. |
7 | BONES R J, TEAGLE D A, BROOKER S D, et al. Development of a Ni, NiCl2 positive electrode for a liquid sodium(zebra) battery cell[J]. Journal of the Electrochemical Society, 1989, 136(5): 1274-1277. |
8 | DUSTMANN C H. Advances in zebra batteries[J]. Journal of Power Sources, 2004, 127(1): 85-92. |
9 | HU Y S. Batteries: Getting solid[J]. Nature Energy, 2016, 1(4): doi: 10.1038/nenergy.2016.42. |
10 | HUESO K B, PALOMARES V, ARMAND M, et al. Challenges and perspectives on high and intermediate-temperature sodium batteries[J]. Nano Research, 2017, 10(12): 4082-4114. |
11 | ZHANG Z Z, SHAO Y J, LOTSCH B, et al. New horizons for inorganic solid state ion conductors[J]. Energy & Environmental Science, 2018, 11(8): 1945-1976. |
12 | 徐来强, 李佳阳, 刘城, 等. 无机钠离子电池固体电解质研究进展[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013. |
XU L Q, LI J Y, LIU C, et al. Research progress in inorganic solid-state electrolytes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905013. | |
13 | 陈光海, 白莹, 高永晟, 等. 全固态钠离子电池硫系化合物电解质[J]. 物理化学学报, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. |
CHEN G H, BAI Y, GAO Y S, et al. Chalcogenide electrolytes for all-solid-state sodium ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): doi: 10.3866/PKU.WHXB201905009. | |
14 | 刘丽露, 戚兴国, 邵元骏, 等. 钠离子固体电解质材料研究进展[J]. 储能科学与技术, 2017, 6(5): 961-980. |
LIU L L, QI X G, SHAO Y J, et al. Research progress on sodium ion solid-state electrolytes[J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. | |
15 | ZHOU C, BAG S, THANGADURAI V, et al. Engineering materials for progressive all-solid-state Na batteries[J]. ACS Energy Letters, 2018, 3(9): 2181-2198. |
16 | TIAN Y, SHI T, RICHARDS W D, et al. Compatibility issues between electrodes and electrolytes in solid-state batteries[J]. Energy & Environmental Science, 2017, 10(5): 1150-1166. |
17 | WENZEL S, LEICHTWEISS T, WEBER D A, et al. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium beta-alumina for protected sodium metal anodes and sodium all-solid-state batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(41): 28216-28224. |
18 | TANG H, DENG Z, LIN Z, et al. Probing solid-solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations[J]. Chemistry of Materials, 2017, 30(1): 163-173. |
19 | HOU W R, GUO X W, SHEN X Y, et al. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective[J]. Nano Energy, 2018, 52: 279-291. |
20 | ZHAO C, LIU L, QI X, et al. Solid-state sodium batteries[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201703012. |
21 | LU X C, XIA G G, LEMMON J P, et al. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives[J]. Journal of Power Sources, 2010, 195(9): 2431-2442. |
22 | KOGANEI K, OYAMA T, INADA M, et al. C-axis oriented beta''-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering[J]. Solid State Ionics, 2014, 267: 22-26. |
23 | HUESO K B, ARMAND M, ROJO T, et al. High temperature sodium batteries: Status, challenges and future trends[J]. Energy & Environmental Science, 2013, 6(3): 734-749. |
24 | CHANG H J, LU X, BONNETT J F, et al. Decorating β′′-alumina solid-state electrolytes with micron Pb spherical particles for improving Na wettability at lower temperatures[J]. Journal of Materials Chemistry A, 2018, 6(40): 19703-19711. |
25 | ZHAO K, LIU Y, ZHANG S M, et al. A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na-beta"-Al2O3 electrolyte and NaTi2(PO4)3 cathode[J]. Electrochemistry Communications, 2016, 69: 59-63. |
26 | LEI D, HE Y B, HUANG H, et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-11960-w. |
27 | LIU L L, QI X G, MA Q, et al. Toothpaste-like electrode: A novel approach to optimize the interface for solid-state sodium-ion batteries with ultralong cycle life[J]. ACS Applied Materials & Interfaces, 2016, 8(48): 32631-32636. |
28 | KIM I, PARK J Y, KIM C H, et al. A room temperature Na/S battery using a β″-alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode[J]. Journal of Power Sources, 2016, 301: 332-337. |
29 | CHI X W, HAO F, ZHANG J B, et al. A high-energy quinone-based all-solid-state sodium metal battery[J]. Nano Energy, 2019, 62: 718-724. |
30 | KEHNE P, GUHL C, ALFF L, et al. The effect of calcium impurities of β″-alumina on the degradation of NaxCoO2 cathodes in all solid state sodium-ion batteries[J]. Solid State Ionics, 2019, 341: doi: 10.1016/j.ssi.2019.115041. |
31 | JUNG K, CHANG H J, BONNETT J F, et al. An advanced Na-NiCl2 battery using bi-layer(dense/micro-porous) β″-alumina solid-state electrolytes[J]. Journal of Power Sources, 2018, 396: 297-303. |
32 | BAY M C, WANG M, GRISSA R, et al. Sodium plating from Na-β″-alumina ceramics at room temperature, paving the way for fast-charging all-solid-state batteries[J]. Advanced Energy Materials, 2020, 10(3): doi: 10.1002/aenm.201902899. |
33 | ZHOU W, LI Y, XIN S, et al. Rechargeable sodium all-solid-state battery[J]. ACS Central Science, 2017, 3(1): 52-57. |
34 | LALÈRE F, LERICHE J B, COURTY M, et al. An all-solid state NASICON sodium battery operating at 200 ℃[J]. Journal of Power Sources, 2014, 247: 975-980. |
35 | YANG J, WAN H L, ZHANG Z H, et al. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries[J]. Rare Metals, 2018, 37(6): 480-487. |
36 | LU Y, ALONSO J A, YI Q, et al. A high-performance monolithic solid-state sodium battery with Ca2+ doped Na3Zr2Si2PO12 electrolyte[J]. Advanced Energy Materials, 2019, 9(28): doi: 10.1002/aenm.201901205. |
37 | KEHNE P, GUHL C, MA Q, et al. Sc-substituted NASICON solid electrolyte for an all-solid-state NaxCoO2/NASICON /Na sodium model battery with stable electrochemical performance[J]. Journal of Power Sources, 2019, 409: 86-93. |
38 | MA Q, TSAI C L, WEI X K, et al. Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S/cm and its primary applications in symmetric battery cells[J]. Journal of Materials Chemistry A, 2019, 7(13): 7766-7776. |
39 | ZHANG Z, ZHANG Q, SHI J, et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J]. Advanced Energy Materials, 2017, 7(4): doi: 10.1002/aenm.201601196. |
40 | GAO H, XUE L, XIN S, et al. A plastic-crystal electrolyte interphase for all-solid-state sodium batteries[J]. Angewandte Chemie-International Edition, 2017, 56(20): 5541-5545. |
41 | RUAN Y L, GUO F, LIU J J, et al. Optimization of Na3Zr2Si2PO12 ceramic electrolyte and interface for high performance solid-state sodium battery[J]. Ceramics International, 2019, 45(2): 1770-1776. |
42 | LAN T, TSAI C L, TIETZ F, et al. Room-temperature all-solid-state sodium batteries with robust ceramic interface between rigid electrolyte and electrode materials[J]. Nano Energy, 2019, 65: doi: 10.1016/j.nanoen.2019.104040. |
43 | MATIOS E, WANG H, WANG C, et al. Graphene regulated ceramic electrolyte for solid-state sodium metal battery with superior electrochemical stability[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5064-5072. |
44 | NOI K, NAGATA Y, HAKARI T, et al. Oxide-based composite electrolytes using Na3Zr2Si2PO12/Na3PS4 interfacial ion transfer[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19605-19614. |
45 | SUN H B, GUO J Z, ZHANG Y, et al. High-voltage all-solid-state Na-ion-based full cells enabled by all NASICON-structured materials[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24192-24197. |
46 | GAO H, XIN S, XUE L, et al. Stabilizing a high-energy-density rechargeable sodium battery with a solid electrolyte[J]. Chem, 2018, 4(4): 833-844. |
47 | ZHANG Z, ZHANG Q, REN C, et al. A ceramic/polymer composite solid electrolyte for sodium batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 15823-15828. |
48 | HAYASHI A, NOI K, SAKUDA A, et al. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries[J]. Nature Communications, 2012, 3: doi: 10.1038/ncomms1843. |
49 | HAYASHI A, NOI K, TANIBATA N, et al. High sodium ion conductivity of glass ceramic electrolytes with cubic Na3PS4[J]. Journal of Power Sources, 2014, 258: 420-423. |
50 | WANG H, CHEN Y, HOOD Z D, et al. An air-stable Na3SbS4 superionic conductor prepared by a rapid and economic synthetic procedure[J]. Angewandte Chemie-International Edition, 2016, 55(30): 8551-8555. |
51 | BANERJEE A, PARK K H, HEO J W, et al. Na3SbS4: A solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angewandte Chemie-International Edition, 2016, 55(33): 9634-9638. |
52 | DUCHARDT M, RUSCHEWITZ U, ADAMS S, et al. Vacancy-controlled Na+ superion conduction in Na11Sn2PS12[J]. Angewandte Chemie-International Edition, 2018, 57(5): 1351-1355. |
53 | ZHANG Z, RAMOS E, LALERE F, et al. Na11Sn2PS12: A new solid state sodium superionic conductor[J]. Energy & Environmental Science, 2018, 11(1): 87-93. |
54 | JIA H H, SUN Y L, ZHANG Z R, et al. Group 14 element based sodium chalcogenide Na4Sn0.67Si0.33S4 as structure template for exploring sodium superionic conductors[J]. Energy Storage Materials, 2019, 23: 508-513. |
55 | JIA H, LIANG X, AN T, et al. Effect of halogen doping in sodium solid electrolytes based on the Na-Sn-Si-P-S quinary system[J]. Chemistry of Materials, 2020, 32(9): 4065-4071. |
56 | JIA H, PENG L, ZHANG Z, et al. Na3.8[Sn0.67Si0.33]0.8Sb0.2S4: A quinary sodium fast ionic conductor for all-solid-state sodium battery[J]. Journal of Energy Chemistry, 2020, 48: 102-106. |
57 | NAM Y J, CHO S J, OH D Y, et al. Bendable and thin sulfide solid electrolyte film: A new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries[J]. Nano Letters, 2015, 15(5): 3317-3323. |
58 | PARK K H, OH D Y, CHOI Y E, et al. Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries[J]. Advanced Materials, 2016, 28(9): 1874-1883. |
59 | HAYASHI A, MASUZAWA N, YUBUCHI S, et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature[J]. Nature Communications, 2019, 10: doi: 10.1038/s41467-019-13178-2. |
60 | FUCHS T, CULVER S P, TILL P, et al. Defect-mediated conductivity enhancements in Na3-xPn1-xWxS4(Pn=P, Sb) using aliovalent substitutions[J]. ACS Energy Letters, 2020, 5(1): 146-151. |
61 | TANIBATA N, DEGUCHI M, HAYASHI A, et al. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature[J]. Chemistry of Materials, 2017, 29(12): 5232-5238. |
62 | WU E A, KOMPELLA C S, ZHU Z, et al. New insights into the interphase between the Na metal anode and sulfide solid-state electrolytes: A joint experimental and computational study[J]. ACS Applied Materials & Interfaces, 2018, 10(12): 10076-10086. |
63 | CHU I H, KOMPELLA C S, NGUYEN H, et al. Room-temperature all-solid-state rechargeable sodium-ion batteries with a Cl-doped Na3PS4 superionic conductor[J]. Scientific Reports, 2016, 6(1): doi: 10.1038/srep33733. |
64 | WAN H, CAI L, WENG W, et al. Cobalt-doped pyrite for Na11Sn2SbS11.5Se0.5 electrolyte based all-solid-state sodium battery with enhanced capacity[J]. Journal of Power Sources, 2020, 449: doi: 10.1016/j.jpowsour.2019.227515. |
65 | HEO J W, BANERJEE A, PARK K H, et al. New Na-ion solid electrolytes Na4-xSn1-xSbxS4(0.02≤x≤0.33) for all-solid-state Na-ion batteries[J]. Advanced Energy Materials, 2018, 8(11): doi: 10.1002/aenm.201702716. |
66 | HU P, ZHANG Y, CHI X, et al. Stabilizing the interface between sodium metal anode and sulfide-based solid-state electrolyte with an electron-blocking interlayer[J]. ACS Applied Materials & Interfaces, 2019, 11(10): 9672-9678. |
67 |
ZHANG S, ZHAO Y, ZHAO F, et al. Gradiently sodiated alucone as an interfacial stabilizing strategy for solid-state Na metal batteries[J]. Advanced Functional Materials, 2020, doi: 10.1002/afma.202001118.
doi: 10.1002/afma.202001118 |
68 | TIAN Y, SUN Y, HANNAH D C, et al. Reactivity-guided interface design in Na metal solid-state batteries[J]. Joule, 2019, 3(4): 1037-1050. |
69 | WAN H, MWIZERWA J P, QI X, et al. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817. |
70 | YUE J, ZHU X, HAN F, et al. Long cycle life all-solid-state sodium ion battery[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39645-39650. |
71 | KIM T W, PARK K H, CHOI Y E, et al. Aqueous-solution synthesis of Na3SbS4 solid electrolytes for all-solid-state Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(3): 840-844. |
72 | FAN X L, YUE J, HAN F D, et al. High-performance all-solid-state Na-S battery enabled by casting-annealing technology[J]. ACS Nano, 2018, 12(4): 3360-3368. |
73 | NAGATA Y, NAGAO K, DEGUCHI M, et al. Amorphization of sodium cobalt oxide active materials for high-capacity all-solid-state sodium batteries[J]. Chemistry of Materials, 2018, 30(20): 6998-7004. |
74 | NASU A, OTOYAMA M, SAKUDA A, et al. Amorphous Na2TiS3 as an active material for all-solid-state sodium batteries[J]. Chemistry Letters, 2019, 48(3): 288-290. |
75 | HAO F, CHI X W, LIANG Y L, et al. Taming active material-solid electrolyte interfaces with organic cathode for all-solid-state batteries[J]. Joule, 2019, 3(5): 1349-1359. |
76 | CHI X W, LIANG Y L, HAO F, et al. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries[J]. Angewandte Chemie-International Edition, 2018, 57(10): 2630-2634. |
77 | WAN H, MWIZERWA J P, HAN F, et al. Grain-boundary-resistance-less Na3SbS4-xSex solid electrolytes for all-solid-state sodium batteries[J]. Nano Energy, 2019, 66: doi:10.1016/j.nanoen.2019.104109. |
78 | WAN H, MWIZERWA J P, QI X, et al. Nanoscaled Na3PS4 solid electrolyte for all-solid-state FeS2/Na batteries with ultrahigh initial coulombic efficiency of 95% and excellent cyclic performances[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12300-12304. |
79 | RAO R P, CHEN H, WONG L L, et al. Na3+xMxP1-xS4(M=Ge4+, Ti4+, Sn4+) enables high rate all-solid-state Na-ion batteries Na2+2δFe2-δ(SO4)3|Na3+xMxP1-xS4|Na2Ti3O7[J]. Journal of Materials Chemistry A, 2017, 5(7): 3377-3388. |
80 | WANG Y G, WANG Q F, LIU Z P, et al. Structural manipulation approaches towards enhanced sodium ionic conductivity in Na-rich antiperovskites[J]. Journal of Power Sources, 2015, 293: 735-740. |
81 | NGUYEN H, HY S, WU E, et al. Experimental and computational evaluation of a sodium-rich anti-perovskite for solid state electrolytes[J]. Journal of the Electrochemical Society, 2016, 163(10): A2165-A2171. |
82 | SUN Y L, WANG Y C, LIANG X M, et al. Rotational cluster anion enabling superionic conductivity in sodium-rich antiperovskite Na3OBH4[J]. Journal of the American Chemical Society, 2019, 141(14): 5640-5644. |
83 | BRAGA M H, MURCHISON A J, FERREIRA J A, et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J]. Energy & Environmental Science, 2016, 9(3): 948-954. |
84 | BRAGA M H, FERREIRA J A, MURCHISON A J, et al. Electric dipoles and ionic conductivity in a Na+ glass electrolyte[J]. Journal of the Electrochemical Society, 2016, 164(2): A207-A213. |
85 | BRAGA M H, GRUNDISH N S, MURCHISON A J, et al. Alternative strategy for a safe rechargeable battery[J]. Energy & Environmental Science, 2017, 10(1): 331-336. |
86 | OGUCHI H, MATSUO M, KUROMOTO S, et al. Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6[J]. Journal of Applied Physics, 2012, 111(3): doi: 10.1063/1.3681362. |
87 | YOSHIDA K, SATO T, UNEMOTO A, et al. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery[J]. Applied Physics Letters, 2017, 110(10): doi: 10.1063/1.4977885. |
88 | LU Z H, CIUCCI F. Structural origin of the superionic na conduction in Na2B10H10 closo-borates and enhanced conductivity by Na deficiency for high performance solid electrolytes[J]. Journal of Materials Chemistry A, 2016, 4(45): 17740-17748. |
89 | KWEON K E, VARLEY J B, SHEA P, et al. Structural, chemical, and dynamical frustration: Origins of superionic conductivity in closoborate solid electrolytes[J]. Chemistry of Materials, 2017, 29(21): 9142-9153. |
90 | TANG W S, UNEMOTO A, ZHOU W, et al. Unparalleled lithium and sodium superionic conduction in solid electrolytes with large monovalent cage-like anions[J]. Energy & Environmental Science, 2015, 8(12): 3637-3645. |
91 | TANG W S, MATSUO M, WU H, et al. Stabilizing lithium and sodium fast-ion conduction in solid polyhedral-borate salts at device-relevant temperatures[J]. Energy Storage Materials, 2016, 4: 79-83. |
92 | TANG W S, MATSUO M, WU H, et al. Liquid-like ionic conduction in solid lithium and sodium monocarba-closo-decaborates near or at room temperature[J]. Advanced Energy Materials, 2016, 6(8): doi: 10.1002/aenm.201502237. |
93 | TANG W S, YOSHIDA K, SOLONININ A V, et al. Stabilizing superionic-conducting structures via mixed-anion solid solutions of monocarba-closo-borate salts[J]. ACS Energy Letters, 2016, 1(4): 659-664. |
94 | DIMITRIEVSKA M, SHEA P, KWEON K E, et al. Carbon incorporation and anion dynamics as synergistic drivers for ultrafast diffusion in superionic LiCB11H12 and NaCB11H12[J]. Advanced Energy Materials, 2018, 8(15): doi: 10.1002/aenm.201703422. |
95 | CUAN J, ZHOU Y, ZHOU T, et al. Borohydride-scaffolded Li/Na/Mg fast ionic conductors for promising solid-state electrolytes[J]. Advanced Materials, 2019, 31(1): doi: 10.1002/adma.201803533. |
96 | DUCHENE L, KUHNEL R S, STILP E, et al. A stable 3 V all-solid-state sodium-ion battery based on a closo-borate electrolyte[J]. Energy & Environmental Science, 2017, 10(12): 2609-2615. |
97 | ASAKURA R, DUCHENE L, KUHNEL R S, et al. Electrochemical oxidative stability of hydroborate-based solid state electrolytes[J]. ACS Applied Energy Materials, 2019, 2(9): 6924-6930. |
98 | PAYANDEH S, ASAKURA R, AVRAMIDOU P, et al. Nido-borate/closo-borate mixed-anion electrolytes for all-solid-state batteries[J]. Chemistry of Materials, 2020, 32(3): 1101-1110. |
99 | DUCHENE L, KUHNEL R S, RENTSCH D, et al. A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J]. Chemical Communications, 2017, 53(30): 4195-4198. |
100 | DUCHENE L, LUNGHAMMER S, BURANKOVA T, et al. Ionic conduction mechanism in the Na2(B12H12)0.5(B10H10)0.5 closo-borate solid-state electrolyte: Interplay of disorder and ion-ion interactions[J]. Chemistry of Materials, 2019, 31(9): 3449-3460. |
101 | BRIGHI M, MURGIA F, LODZIANA Z, et al. A mixed anion hydroborate/carba-hydroborate as a room temperature Na-ion solid electrolyte[J]. Journal of Power Sources, 2018, 404: 7-12. |
102 | HE L Q, LIN H J, LI H F, et al. Na3NH2B12H12 as high performance solid electrolyte for all-solid-state Na-ion batteries[J]. Journal of Power Sources, 2018, 396: 574-579. |
[1] | LI Yitao, SHEN Kaier, PANG Quanquan. Advance in organics enhanced sulfide-based solid-state batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1902-1918. |
[2] | Zhuo XU, Lili ZHENG, Bing CHEN, Tao ZHANG, Xiuling CHANG, Shouli WEI, Zuoqiang DAI. Overview of research on composite electrolytes for solid-state batteries [J]. Energy Storage Science and Technology, 2021, 10(6): 2117-2126. |
[3] | Xie WU, Li ZHOU, Zhaoming XUE. Synthesis and performance of solid polymer electrolytes based on chelated boron lithium salts [J]. Energy Storage Science and Technology, 2021, 10(1): 96-103. |
[4] | Ge SUN, Zhixuan WEI, Xinyuan ZHANG, Nan CHEN, Gang CHEN, Fei DU. Recent progress of sodium-based inorganic solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(5): 1251-1265. |
[5] | Jie WU, Xiaobiao JIANG, Yang YANG, Yongmin WU, Lei ZHU, Weiping TANG. Progress of NASICON-structured Li1+xAlxTi2-x(PO4)3 (0 ≤x≤ 0.5) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(5): 1472-1488. |
[6] | Jing YANG, Gaozhan LIU, Lin SHEN, Xiayin YAO. Research progress on NASICON-structured sodium solid electrolytes and their derived solid state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1284-1299. |
[7] | Manman JIA, Long ZHANG. Recent development on sulfide solid electrolytes for solid-state sodium batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1266-1283. |
[8] | QU Chenying, HOU Zhaoxia, WANG Xiaohui, WANG Jian, WANG Kai, LI Siyao. Research progress of gel polymer electrolytes on solid supercapacitors [J]. Energy Storage Science and Technology, 2020, 9(3): 776-783. |
[9] | HUANG Xiao, WU Linbin, HUANG Zhen, LIN Jiu, XU Xiaoxiong. Characterization and testing of key electrical and electrochemical properties of lithium-ion solid electrolytes [J]. Energy Storage Science and Technology, 2020, 9(2): 479-500. |
[10] | JIANG Pengfeng, SHI Yuansheng, LI Kangwan, HAN Baichuan, YAN Liquan, SUN Yang, LU Xia. Recent progress on the Li7La3Zr2O12 (LLZO) solid electrolyte [J]. Energy Storage Science and Technology, 2020, 9(2): 523-537. |
[11] | DUAN Hui1,2, YIN Yaxia1,2, GUO Yuguo1,2, WAN Lijun1,2. Research progress on solid-state lithium metal batteries [J]. Energy Storage Science and Technology, 2017, 6(5): 941-951. |
[12] | LIU Lilu1, QI Xingguo1, SHAO Yuanjun1, PAN Du1,2, BAI Ying2, HU Yongsheng1, LI Hong1, CHEN Liquan1. Research progress on sodium ion solid-state electrolytes [J]. Energy Storage Science and Technology, 2017, 6(5): 961-980. |
[13] | SUN Yingzhi, HUANG Jiaqi, ZHANG Xueqiang, ZHANG Qiang. Review on solid state lithium-sulfur batteries with sulfide solid electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 464-478. |
[14] | SHI Kai, AN Decheng, HE Yanbing, LI Baohua, KANG Feiyu. Research progress and future trends of solid state lithium-sulfur batteries based on polymer electrolytes [J]. Energy Storage Science and Technology, 2017, 6(3): 479-492. |
[15] | DU Aobing, CHAI Jingchao, ZHANG Jianjun, LIU Zhihong, CUI Guanglei. All-solid-state lithium-ion batteries based on polymer electrolytes: State of the art, challenges and future trends [J]. Energy Storage Science and Technology, 2016, 5(5): 627-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||