Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1350-1369.doi: 10.19799/j.cnki.2095-4239.2020.0179
Previous Articles Next Articles
Hongming YI1,2(), Zhiqiang LYU1,2, Huamin ZHANG1, Mingming SONG3, Qiong ZHENG1(), Xianfeng LI1()
Received:
2020-05-17
Revised:
2020-05-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Qiong ZHENG,Xianfeng LI
E-mail:yihm@dicp.ac.cn;zhengqiong@dicp.ac.cn;lixianfeng@dicp.ac.cn
CLC Number:
Hongming YI, Zhiqiang LYU, Huamin ZHANG, Mingming SONG, Qiong ZHENG, Xianfeng LI. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369.
Table 1
Main characteristic parameters and performance data of some typical V-based polyanionic compounds"
材料体系 | 材料名称 | 晶体结构类型 | 氧化还原电对 | 氧化还原电位/V | 理论 比容量/mA·h·g-1 | 理论能量密度 /W·h·kg-1 | 储钠机理 | 钠扩散系数 /cm·s-1 | 电化学性能 |
---|---|---|---|---|---|---|---|---|---|
正磷 酸盐 | Na3V2(PO4)3[ | rhombohedral (NASICON, | V4+/V3+ | 3.4 | 117.6 | 400 | bi-phase reaction | 1.06×10-11 /CV | 107.1 mA·h/g at 0.1 C |
Na3V2(PO4)3[ | rhombohedral (NASICON, | V4+/V3+ | 3.4 | 117.6 | 400 | bi-phase reaction | 9.6×10-11 /CV | 117 mA·h/g at 1 C 82 mA·h/g at 100 C | |
NaVOPO4[ | monoclinic | V5+/V4+ | 3.6 | 145 | 522 | single-phase reaction | 1-3×10–11 /GITT | 101 mA·h/g at 5 C | |
NaVOPO4[ | orthorhombic | V5+/V4+ | 3.3 | 145 | 479 | — | — | 115 mA·h/g at 0.1 C | |
KVOPO4[ | orthorhombic | V5+/V3+ | 2.56 | 266.7 | 683 | 9.6 × 10-12 /CV | 235 mA·h/g at 0.05 C | ||
NaVOPO4[ | tetragonal (layered structure) | — | — | — | — | — | — | — | |
NaVOPO4[ | triclinic | V5+/V4+ | 3.5 | 145 | 508 | multi-phase reactions | 4.9 × 10-11 /EIS | 144 mA·h/g at 0.05 C 58 mA·h/g at 5 C | |
VOPO4[ | tetragonal (layered structure) | V5+/V4+ | 3.4 | 165.5 | 563 | — | — | 150 mA·h/g at 0.05 C | |
Na3V3(PO4)4[ | monoclinic (layered structure, C2/c) | V4+/V3+ | 3.9 | 44.5 | 174 | — | — | >40 mA·h/g at 0.6 C 36.9 mA·h/g at 3 C | |
Na3V(PO4)2[ | monoclinic (layered structure, C2/c) | V4+/V3+ | 3.5 | 90 | 315 | — | — | >90 mA·h/g at 0.2 C 71 mA·h/g at 15 C | |
Na4VO(PO4)2[ | orthorhombic (Pbca) | V5+/V4+ | 3.5 | 78 | 273 | single-phase reaction | — | 41.3 mA·h/g at 10 C | |
氟磷 酸盐 | NaVPO4F[ | tetragonal (NASICON, I4/mmm) | V4+/V3+ | 3.7 | 142.5 | 485 | — | — | 120.9 mA·h/g at 0.05 C 70.1 mA·h/g at 0.5 C |
NaVPO4F[ | monoclinic (NASICON, C2/c) | V4+/V3+ | 3.4 | 142.5 | 484.5 | single-phase reaction | — | 135 mA·h/g at 0.2 C 112 mA·h/g at 30 C | |
Na3V2(PO4)2F3[ | tetragonal (NASICON, P42/mnm) | V4+/V3+ | 3.9 | 128.3 | 500 | bi-phase reaction and single-phase reaction | 10-12 /EIS | 125 mA·h/g at 0.2 C 104 mA·h/g at 40 C 41 mA·h/g at 200 C | |
Na3V2(PO4)2O2F[ | tetragonal (I4/mmm) | V5+/V4+ | 3.8 | 130 | 494 | two completely reversible bi-phasic reaction | — | 127.4 mA·h/g at 0.2 C 84.1 mA·h/g at 40 C | |
Na3V2(PO4)2O1.6F1.4[ | tetragonal (P42/mnm) | V5+/V3.8+ | 3.8 | 155.6 | 592 | single-phase reaction | 2.4×10-12 /EIS | 134 mA·h/g at 0.1 C | |
焦磷 酸盐 | Na7V3(P2O7)4[ | monoclinic (C2/c) | V4+/V3+ | 4.13 | 79.6 | 329 | single-phase reaction | — | 67.2 mA·h/g at 8 C |
Na2(VO)P2O7[ | tetragonal (P21/c) | V5+/V4+ | 3.8 | 93.4 | 355 | — | — | 80 mA·h/g at 0.05 C | |
NaVP2O7[ | monoclinic | V4+/V3+ | 3.9 | 108.1 | 421 | — | — | 104 mA·h/g at 0.1 C | |
混合聚 阴离子型 | Na7V4(P2O7)4(PO4)[ | tetragonal (P | V4+/V3+ | 3.85 | 92.7 | 357 | bi-phasic reaction | — | 92 mA·h/g at 0.05 C 70.2 mA·h/g at 10 C |
Fig.14
(a) schematic of integration of extraction-separation and materials-preparation; (b) schematic illustration of traditional solid-state method, solvothermal method, and solvothermal-ball-milling method; (c) parameter comparison of traditional solid-state method, solvothermal method, and solvothermal-ball-milling method"
1 | ROJO T, HU Y S, FORSYTH M, et al. Sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(17): doi:10.1002/adma.201800880. |
2 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): 11636-11682. |
3 | PAN Huilin, HU Yongsheng, CHEN Liquan. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): 2338-2360. |
4 | HWANG J Y, MYUNG S T, SUN Y K. Sodium-ion batteries: Present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. |
5 | CHE Haiying, CHEN Suli, XIE Yingying, et al. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1075-1101. |
6 | XIANG Xingde, ZHANG Kai, CHEN Jun. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364. |
7 | 容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522. |
RONG Xiaohui, LU Yaxiang, QI Xingguo, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522. | |
8 | BAURE A, SONG J, VAIL S, et al. The scale-up and commercialization of nonaqueous Na-ion battery technologies[J]. Advanced Energy Materials, 2018, 8(17): doi: 10.1002/aenm.201702869. |
9 | DAI Zhengfei, MANI U, TAN Huiteng, et al. Advanced cathode materials for sodium-ion batteries: What determines our choices?[J]. Small Methods, 2017, 1: doi: 10.1002/smtd.201700098. |
10 | GUO Jinzhi, WANG Pengfei, WU Xinglong, et al. High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701968. |
11 | JIAN Zelang, HAN Wenze, LU Xia, et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries[J]. Advanced Energy Materials, 2013, 3(2): 156-160. |
12 | ZHU Changbao, KOPOLD P, AKEN P A VAN, et al. High power-high energy sodium battery based on threefold interpenetrating network[J]. Advanced Materials, 2016, 28(12): 2409-2416. |
13 | CHEN Chihyao, MATSUMOTO K, NOHIRA T, et al. Improved electrochemical performance of NaVOPO4 positive electrodes at elevated temperature in an ionic liquid electrolyte[J]. Journal of the Electrochemical Society, 2015, 162(10): A2093-A2098. |
14 | NI Yang, HE Guang. Stable cycling of β-VOPO4/NaVOPO4 cathodes for sodium-ion batteries[J]. Electrochim Acta, 2018, 292: 47-54. |
15 | DING Jia, LIN Yuhchieh, LIU Jue, et al. KVOPO4: A new high capacity multielectron Na-ion battery cathode[J]. Advanced Energy Materials, 2018, 8(21): doi: 10.1002/aenm.201800221. |
16 | APARICION P A, DAWSON J A, ISLAM M S, et al. Computational study of NaVOPO4 polymorphs as cathode materials for Na-ion batteries: Diffusion, electronic properties, and cation-doping behavior[J]. The Journal of Physical Chemistry C, 2018, 122 (45): 25829-25836. |
17 | FANG Yongjin, LIU Qi, XIAO Lifen, et al. A fully sodiated NaVOPO4 with layered structure for high-voltage and long-lifespan sodium-ion batteries[J]. Chemistry, 2018, 4(5): 1167-1180. |
18 | HE Guang, KAN Wanghay, MANTHIRAM A. A 3.4 V layered VOPO4 cathode for Na-ion batteries[J]. Chemistry of Materials, 2016, 28(2): 682-688. |
19 | LIU Rui, LIU Haodong, SHENG Tian, et al. A novel 3.9 V layered Na3V3(PO4)4 cathode material for sodium ion batteries[J]. ACS Applied Energy Materials, 2018, 1(8): 3603-3606. |
20 | KIM Jongsoon, YOON Gabin, KIM Hyungsub, et al. Na3V(PO4)2: A new layered-type cathode material with high water stability and power capability for Na-ion batteries[J]. Chemistry of Materials, 2018, 30(11): 3683-3689. |
21 | KIM Jongsoon, KIM Hyungsub, Seongsu LEE. High power cathode material Na4VO(PO4)2 with open framework for Na ion batteries[J]. Chemistry of Materials, 2017, 29(8): 3363-3366. |
22 | RUAN Yanli, WANG Kun, SONG Shidong, et al. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries[J]. Electrochimica Acta, 2015, 160: 330-336. |
23 | LING Moxiang, LI Fan, YI Hongming, et al. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(47): 24201-24209. |
24 | SONG Weixin, JI Xiaobo, WU Zhengping, et al. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 256: 258-263. |
25 | YI Hongming, LING Moxiang, XU Wenbin, et al. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352. |
26 | XU Junling, CHEN Jizhang, TAO Li, et al. Investigation of Na3V2(PO4)2O2F as a sodium ion battery cathode material: Influences of morphology and voltage window[J]. Nano Energy, 2019, 60: 510-519. |
27 | PARK Y U, SEO D H, KWON D H, et al. A new high-energy cathode for a Na-ion battery with ultrahigh stability[J]. Journal of the American Chemical Society, 2013, 135(37): doi: 10.1021/ja406016j. |
28 | KIM J, PARK I, KIM H, et al. Tailoring a new 4 V-class cathode material for Na-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): doi: 10.1002/aenm.201502147. |
29 | BARPANDA P, LIU G D, AVDEEV M, et al. t-Na2(VO)P2O7: A 3.8 V pyrophosphate insertion material for sodium-ion batteries[J]. Chemelectrochem, 2014, 1(9): 1488-1491. |
30 | DROZHZHIN O A, TERTOV I V, ALEKSEEVA A M. β-NaVP2O7 as a superior electrode material for Na-ion batteries[J]. Chemistry of Materials, 2019, 31(18): 7463-7469. |
31 | FANG Wenying, AN Zhongxun, XU Jiaqiang, et al. Superior performance of Na7V4(P2O7)4PO4 in sodium ion batteries[J]. RSC Advances, 2018, 8(38): 21224-21228. |
32 | CHEN Shuangqiang, WU Chao, SHEN Laifa, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29: doi: 10.1002/adma.201700431. |
33 | CUSHING B L, GOODENOUGH J B. Li2NaV2(PO4)3: A 3.7 V lithium-insertion cathode with the rhombohedral NASICON structure[J]. Journal of Solid State Chemistry, 2001, 162(2): 176-181. |
34 | SONG Weixin, JI Xiaobo, WU Zhengping, et al. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3[J]. Journal of Materials Chem. A, 2014, 2(15): doi: 10.1039/C4TA00230J. |
35 | SONG Jie, XU Maowen, WANG Long, et al. Exploration of NaVOPO4 as a cathode for a Na-ion battery[J]. Chemical Communications, 2013, 49(46): 5280-5282. |
36 | LIU Zigeng, HU Yanyan, DUNSTAN M T, et al. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3[J]. Chemistry of Materials, 2014, 26(8): 2513-2521. |
37 | BIANCHINI M, BRISSET N, FAUTH F, et al. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study[J]. Chemistry of Materials, 2014, 26(14): 4238-4247. |
38 | XIANG Xingde, ZHANG Kai, CHEN Jun. Advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364. |
39 | SONG Weixin, CAO Xiaoyu, WU Zhengping, et al. Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation[J]. Langmuir, 2014, 30(41): 12438-12446. |
40 | BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-Na3V2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020. |
41 | ZHAO Jianqing, HE Jianping, DING Xiaochun, et al. A novel sol-gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries[J]. Journal of Power Sources, 2010, 195(19): 6854-6859. |
42 | PARK Y U, SEO D H, KIM H, et al. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1-xPO4)2F1+2x (0≤x≤1) combined first-principles and experimental study[J]. Advanced Function Materials, 2014, 24: 4603-4614 |
43 | QI Yuruo, MU Linqin, ZHAO Junmei, et al. Superior Na-storage performance of low-temperature-synthesized Na3(VO1-xPO4)2F1+2x(0≤x≤1) nanoparticles for Na-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(34): 9911-9916. |
44 | WERNER M, OLGA V. Crystal structure of a new sodium vanadyl(Ⅳ) fluoride phosphate Na3V2O2F(PO4)2[J]. Solid State Sciences, 2002, 4(4): 495-501. |
45 | SAUVAGE F, QUAREZ E, TARASCON J M, et al. Crystal structure and electrochemical properties vs Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5[J]. Solid State Sciences, 2006, 8(10): 1215-1221. |
46 | SERRAS P, PALOMARES V, GONI A, et al. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3-2x[J]. Journal of Materials Chemistry, 2012, 22(41): 22301-22308. |
47 | XU Maowen, WANG Long, ZHAO Xin, et al. Na3V2O2(PO4)2F/graphene sandwich structure for high-performance cathode of a sodium-ion battery[J]. Physical Chemistry Chemical Physics, 2013, 15(31): doi: 10.1039/C3CP52408f. |
48 | DENG Chao, ZHANG Sen. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(12): doi: 10.1021/am501072j. |
49 | ZHANG Bao, CHEN Hezhang, TONG Hui, et al. Synthesis and electrochemical performance of Ni doped Na3V2(PO4)3/C cathode materials for sodium ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 976-983. |
50 | BIANCHINI M, XIAO Penghao, WANG Yan, et al. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries[J]. Advanced Energy Materials, 2017, 7(18): doi: 10.1002/aenm.201700514. |
51 | LIM S J, HAN D W, NAM D H, et al. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(46): 19623-19632. |
52 | ZHENG Qiong, NI Xiao, LIN Le, et al. Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)3 for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 4209-4218. |
53 | HU Pu, WANG Xiaofang, WANG Tianshi, et al. Boron substituted Na3V2(P1-xBxO4)3 cathode materials with enhanced performance for sodium-ion batteries[J]. Advanced Science, 2016, 3(12): doi: 10.1002/advs.201600112. |
54 | DUAN Wenchao, ZHU Zhiqiang, LI Hao, et al. Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(23): 8668-8675. |
55 | LIU Qiang, MENG Xing, WEI Zhixuan, et al. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespancathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31709-31715. |
56 | RUI Xianhong, SUN Wenping, WU Chao, et al. An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network[J]. Advanced Materials, 2015, 27(42): 6670-6675. |
57 | SHEN Wei, WANG Cong, XU Qunjie, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials, 2015, 5(1): doi: 10.1002/aenm.201400982. |
58 | SHEN Wei, LI Hui, WANG Cong, et al. Improved electrochemical performance of the Na3V2(PO4)3 cathode by B-doping of the carbon coating layer for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(29): 15190-15201. |
59 | JIANG Yu, ZHOU Xuefeng, LI Dongjun, et al. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering[J]. Advanced Energy Materials, 2018, 8(16): doi: 10.1002/aenm.201800068. |
60 | LIANG Xinghui, Xing OU, ZHENG Fenghua, et al. Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13151-13162. |
61 | ZHANG Lulu, LIU Jing, WEI Cheng, et al. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12: 3670-3680. |
62 | JIN Ting, LIU Yongchang, LI Yang, et al. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J]. Advanced Energy Materials, 2017, 7(15): doi: 10.1002/aenm.201700087. |
63 | Zhiqiang LYU, LING Moxiang, YI Hongming, et al. Electrode design for high-performance sodium-ion batteries: Coupling nanorodsssembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 13869-13877. |
64 | YI Hongming, LI Dan, Zhiqiang LYU, et al. Constructing high-performance 3D porous self-standing electrodes with various morphologies and shapes by a flexible phase separation-derived method[J]. Journal of Materials Chemistry A, 2019, 7(39): 22550-22558. |
65 | ZHOU Weidong, XUE Leigang, Xujie LYU, et al. NaxMV(PO4)3 (M=Mn, Fe, Ni) structure and properties for sodium extraction[J]. Nano Letters, 2016, 16(12): 7836-7841. |
66 | DONG Jing, ZHANG Guoming, WANG Xiaoguang, et al. Cross-linked Na2VTi(PO4)3@C hierarchical nanofibers as high-performance bi-functional electrodes for symmetric aqueous rechargeable sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5(35): 18725-18736. |
67 | KIM Y, HA K H, HO S M, et al. High-capacity anode materials for sodium-ion batteries[J]. Chemistry—A European Journal, 2014, 20: 11980-11992. |
68 | QI Yuruo, TONG Zizheng, ZHAO Junmei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes[J]. Joule, 2018, 2(11): 2348-2363. |
69 | YI Hongming, LIN Le, LING Moxiang, et al. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal ball-milling method[J]. ACS Energy Letters, 2019, 4(7): 1565-1571. |
70 | DING C S, NOHIRA T, KURODA K, et al. NaFSA-C1C3pyrFSA ionic liquids for sodium secondary battery operating over a wide temperature range[J]. Journal of Power Sources, 2013, 238: 296-300. |
71 | KIM J, CHA H, LEE H, et al. Surface and interfacial chemistry in the nickel-rich cathode materials[J]. Batteries & Supercaps, 2020, 3(4): 309-322. |
72 | LI Jing, LI Hongyang, STONE W, et al. Development of electrolytes for single crystal NMC532/artificial graphite cells with long lifetime[J]. Journal of the Electrochemical Society, 2018, 165(3): A626-A635. |
73 | SCHIPPER F B, DIXIT H, ERICKSON M, et al. From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201701682. |
74 | LIU Wen, LI Xifei, XIONG Dongbin, et al. Significantly improving cycling performance of cathodes in lithium ion batteries: The effect of Al2O3 and LiAlO2 coatings on LiNi0.6Co0.2Mn0.2O2[J]. Nano Energy, 2018, 44: 111-120. |
75 | WU Feng, ZHU Na, BAI Ying, et al. Unveil the mechanism of solid electrolyte interphase on Na3V2(PO4)3 formed by a novel NaPF6/BMITFSI ionic liquid electrolyte[J]. Nano Energy, 2018, 51: 524-532. |
[1] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[2] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[3] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[4] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[5] | Peng ZHANG, Xingqiang LAI, Junrong SHEN, Donghai ZHANG, Yongheng YAN, Rui ZHANG, Jun SHENG, Kangwei DAI. Research and industrialization progress of solid-state lithium battery [J]. Energy Storage Science and Technology, 2021, 10(3): 896-904. |
[6] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[7] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[8] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[9] | Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427. |
[10] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
[11] | Xingguo QI, Weigang WANG, Yongsheng HU, Qiang ZHANG. Surface modification research of layered oxide materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. |
[12] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[13] | Quan ZHOU, Xingguo QI, Yaxiang LU, Xiaohui RONG, Fei TANG, Weihe KONG, Kun TANG, Liquan CHEN, Yongsheng HU. The necessity of establishing Na-ion battery standards [J]. Energy Storage Science and Technology, 2020, 9(5): 1225-1233. |
[14] | Yun LU, Jianing LIANG, Yong ZHU, Zhengrong LI, Yezhou HU, Ke CHEN, Deli WANG. Recent progress in organics derived cathode materials for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1454-1466. |
[15] | FAN Ersha, LI Li, LIN Jiao, ZHANG Xiaodong, CHEN Renjie, WU Feng. Low-temperature molten-salt-assisted recycling of spent LiNi1/3Co1/3Mn1/3O2 cathode materials [J]. Energy Storage Science and Technology, 2020, 9(2): 361-367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||