Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1416-1427.doi: 10.19799/j.cnki.2095-4239.2020.0169
Previous Articles Next Articles
Wei ZHENG(), Qiong LIU, Zhouguang LU()
Received:
2020-05-08
Revised:
2020-05-28
Online:
2020-09-05
Published:
2020-09-08
Contact:
Zhouguang LU
E-mail:zhengorwei@163.com;luzg@sustech.edu.cn
CLC Number:
Wei ZHENG, Qiong LIU, Zhouguang LU. Modulating anionic redox reaction in layered transition metal oxides for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1416-1427.
1 | WHITTINGHAM M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104: 4271-4301. |
2 | LARCHER D, TARASCON J R. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29. |
3 | LIU W, OH P, LIU X, et al. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries[J]. Angewandte Chemie International Edition, 2015, 54(15): 4440-4457. |
4 | XU J, LIN F, DOEFF M M, et al. A review of Ni-based layered oxides for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(3): 874-901. |
5 | HE P, YU H J, LI D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(9): doi: 10.1039/c2jm14305d. |
6 | WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. |
7 | YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries[J]. Chemical Reviews, 2014, 114(23): doi: 10.1021/cr500192f. |
8 | KIM S W, SEO D H, MA A, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721. |
9 | PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science, 2013, 6(8): doi: 10.1039/c3ee40847g. |
10 | QIAO R, WRAY L A, KIM J H, et al. Direct experimental probe of the Ni(II)/Ni(III)/Ni(IV) redox evolution in LiNi0.5Mn1.5O4 electrodes[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27228-27233. |
11 | ZHENG X, LI X H, WANG Z X, et al. Investigation and improvement on the electrochemical performance and storage characteristics of LiNiO2-based materials for lithium ion battery[J]. Electrochimica Acta, 2016, 191: 832-840. |
12 | DAHÉRON L, DEDRYVERE R, MARTINEZ H, et al. Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS[J]. Chemistry of Materials, 2008, 20(2): 583-590. |
13 | ASSAT G, TARASCON J M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries[J]. Nature Energy, 2018, 3(5): 373-386. |
14 | SATHIYA M, ROUSSE G, RAMESHA K, et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes[J]. Nature Materials, 2013, 12(9): 827-835. |
15 | GRIMAUD A, HONG W T, SHAO-HORN Y, et al. Anionic redox processes for electrochemical devices[J]. Nature Materials, 2016, 15(2): 121-126. |
16 | BEN Y M, VERGNET J, SAUBANERE M, et al. Unified picture of anionic redox in Li/Na-ion batteries[J]. Nature Materials, 2019, 18(5): 496-502. |
17 | LI B,XIA D. Anionic redox in rechargeable lithium batteries[J]. Advanced Materials, 2017, 29(48): doi: 10.1002/adma.201701054. |
18 | ZHAO C L, WANG Q D, LU Y S, et al. Review on anionic redox for high capacity lithium- and sodium-ion batteries[J]. Journal of Physics D: Applied Physics, 2017, 50(18): doi: 10.1088/1361-6463/aa646d. |
19 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99(1/2/3/4): 81-85. |
20 | TARASCON J, VAUGHAN G, CHABRE Y, et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry[J]. Journal of Solid State Chemistry, 1999, 147(1): 410-420. |
21 | AYDINOL M, KOHAN A, CEDER G, et al. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides[J]. Physical Review B, 1997, 56(3): 1354. |
22 | CEDER G, CHIANG Y M, SADOWAY D, et al. Identification of cathode materials for lithium batteries guided by first-principles calculations[J]. Nature, 1998, 392(6677): 694-696. |
23 | YOON W S, KIM K B, KIM M G, et al. Oxygen contribution on Li-ion intercalation-deintercalation in LiCoO2 investigated by O K-edge and Co L-edge X-ray absorption spectroscopy[J]. The Journal of Physical Chemistry B, 2002, 106(10): 2526-2532. |
24 | HY S, FELIX F, RICK J, et al. Direct In situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2(0<x<0.5)[J]. Journal of the American Chemical Society, 2014, 136(3): 999-1007. |
25 | ASSAT G, FOIX D, DELACOURT C, et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes[J]. Nature Communications, 2017, 8(1): doi: 10.1038/s41467-017-02291-9. |
26 | HY S, SU W N, CHEN J M, et al. Soft X-ray absorption spectroscopic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25242-25247. |
27 | LI X, QIAO Y, GUO S, et al. Direct visualization of the reversible O2-/O- redox process in Li-rich cathode materials[J]. Advanced Materials, 2018, 30(14): doi: 10.1002/adma.201705197. |
28 | MCCALLA E, ABAKUMOV A M, SAUBANÈRE M, et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries[J]. Science, 2015, 350(6267): doi: 10.1126/science.aac8260. |
29 | HY S, LIU H, ZHANG M, et al. Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries[J]. Energy & Environmental Science, 2016, 9(6): 1931-1954. |
30 | SATHIYA M, RAMESHA K, ROUSSE G, et al. High performance Li2Ru1–yMnyO3 (0.2≤y≤0.8) cathode materials for rechargeable lithium-ion batteries: Their understanding[J]. Chemistry of Materials, 2013, 25(7): 1121-1131. |
31 | LUO K, ROBERTS M R, HAO R, et al. Charge compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen[J]. Nature Chemistry, 2016, 8(7): 684-691. |
32 | SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials[J]. Nature Chemistry, 2016, 8(7): 692-697. |
33 | OKUBO M, YAMADA A. Molecular orbital principles of oxygen-redox battery electrodes[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 36463-36472. |
34 | BOISSE B M D, LIU G, MA J, et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode[J]. Nature Communications, 2016, 7: doi: 10.1038/ncomms11397. |
35 | PEREZ A J, BATUK D, RE M S, et al. Strong oxygen participation in the redox governing the structural and electrochemical properties of Na-rich layered oxide Na2IrO3[J]. Chemistry of Materials, 2016, 28(22): 8278-8288. |
36 | ZHANG X, QIAO Y, GUO S, et al. Manganese-based Na-rich materials boost anionic redox in high-performance layered cathodes for sodium-ion batteries[J]. Advanced Materials, 2019, 31(27): doi: 10.1002/adma.201807770. |
37 | KIM D, CHO M, CHO K. Rational design of Na(Li1/3Mn2/3)O2 operated by anionic redox reactions for advanced sodium-ion batteries[J]. Advanced Materials, 2017, 29(33): doi: 10.1002/adma.201701788. |
38 | RONG X H, LIU J, HU E Y, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode[J]. Joule, 2018, 2(1): 125-140. |
39 | RONG X H, HU E Y, LU Y X, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3(2): 503-517. |
40 | HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2019, 577(7791): 502-508. |
41 | MAITRA U, HOUSE R A, SOMERVILLE J W, et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2[J]. Nature Chemistry, 2018, 10(3): 288-295. |
42 | HOUSE R A, MAITRA U, JIN L, et al. What triggers oxygen loss in oxygen redox cathode materials?[J]. Chemistry of Materials, 2019, 31(9): 3293-3300. |
43 | SONG B, HU E, LIU J, et al. A novel P3-type Na2/3Mg1/3Mn2/3O2 as high capacity sodium-ion cathode using reversible oxygen redox[J]. Journal of Materials Chemistry A, 2019, 7(4): 1491-1498. |
44 | MORTEMARD D B B, NISHIMURA S I, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8(20): doi: 10.1002/aenm.201800409. |
45 | SONG B H, TANG M X, HU E Y, et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7[J]. Chemistry of Materials, 2019, 31(10): 3756-3765. |
46 | MA C, ALVARADO J, XU J, et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139(13): 4835-4845. |
47 | ZHAO C L, WANG Q D, LU Y X, et al. Decreasing transition metal triggered oxygen redox activity in Na-deficient oxides[J]. Energy Storage Materials, 2018, 20: 395-400. |
48 | BAI X, SATHIYA M, BEATRIZ M S, et al. Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1-yZnyO2(0<y<0.23)[J]. Advanced Energy Materials, 2018, 8(32): doi: 10.1002/aenm.201802379. |
49 | ZHENG W, LIU Q, WANG Z Y, et al. Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides[J]. Journal of Power Sources, 2019, 439: doi: 10.1002/anie.201900444. |
50 | KONAROV A, JO J H, CHOI J U, et al. Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries[J]. Nano Energy, 2019, 59: 197-206. |
51 | ZHENG W, LIU Q, WANG Z Y, et al. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 28: 300-306. |
52 | RISTHAUS T, ZHOU D, CAO X, et al. A high-capacity P2-Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity[J]. Journal of Power Sources, 2018, 395: 16-24. |
53 | KONG W J, GAO R, LI Q Y, et al. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg Co-doping[J]. Journal of Materials Chemistry A, 2019, 7(15): 9099-9109. |
54 | KIM E J, MA L A, DUDA L D, et al. Oxygen redox activity through a reductive coupling mechanism in the P3-type nickel-doped sodium manganese oxide[J]. ACS Applied Energy Materials, 2019, 3(1): 184-191. |
55 | HAKIM C, SABI N, DAHBI M, et al. Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries[J]. Communications Chemistry, 2020, 3(1): 1-9. |
56 | YAN P, ZHENG J, TANG K Z, et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes[J]. Nature Nanotechnology, 2019, 14(6): 602-608. |
57 | SATHIYA M, ABAKUMOV A M, FOIX D, et al. Origin of voltage decay in high-capacity layered oxide electrodes[J]. Nature Materials, 2015, 14(2): 230-238. |
58 | MYEONG S, CHO W, JIN W, et al. Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement[J]. Nature Communications, 2018, 9(1): doi: 10.1038/s41467-018-05802-4. |
[1] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[2] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[3] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[4] | Qiang CHEN, Min LI, Jingfa LI. Application of Prussian blue analogs and their derivatives in potassium ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 1002-1015. |
[5] | Yongli HENG, Zhenyi GU, Jinzhi GUO, Xinglong WU. Na3V2(PO4)3@C cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(3): 938-944. |
[6] | Min'an YANG, Ning CHEN, Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI. Gene law about cycle stability of cathode material for lithium-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(2): 462-469. |
[7] | Zuhao ZHANG, Xiaokai DING, Dong LUO, Jiaxiang CUI, Huixian XIE, Chenyu LIU, Zhan LIN. Challenges and solutions of lithium-rich manganese-based layered oxide cathode materials [J]. Energy Storage Science and Technology, 2021, 10(2): 408-424. |
[8] | Yue MU, Yun DU, Hai MING, Songtong ZHANG, Jingyi QIU. Methods of investigating structural evolution and interface behavior in cathode materials for Li-ion batteries [J]. Energy Storage Science and Technology, 2021, 10(1): 7-26. |
[9] | Hongming YI, Zhiqiang LYU, Huamin ZHANG, Mingming SONG, Qiong ZHENG, Xianfeng LI. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. |
[10] | Yongsheng GAO, Guanghai CHEN, Xinran WANG, Ying BAI, Chuan WU. Safety of electrolytes for sodium-ion batteries: Strategies and progress [J]. Energy Storage Science and Technology, 2020, 9(5): 1309-1317. |
[11] | Xingguo QI, Weigang WANG, Yongsheng HU, Qiang ZHANG. Surface modification research of layered oxide materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401. |
[12] | Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. |
[13] | Yun LU, Jianing LIANG, Yong ZHU, Zhengrong LI, Yezhou HU, Ke CHEN, Deli WANG. Recent progress in organics derived cathode materials for lithium sulfur batteries [J]. Energy Storage Science and Technology, 2020, 9(5): 1454-1466. |
[14] | FAN Ersha, LI Li, LIN Jiao, ZHANG Xiaodong, CHEN Renjie, WU Feng. Low-temperature molten-salt-assisted recycling of spent LiNi1/3Co1/3Mn1/3O2 cathode materials [J]. Energy Storage Science and Technology, 2020, 9(2): 361-367. |
[15] | MAO Shulan, WU Qian, WANG Zhuoya, LU Yingying. Research progress on high-voltage electrolytes for ternary NCM lithium-ion batteries [J]. Energy Storage Science and Technology, 2020, 9(2): 538-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||