Energy Storage Science and Technology ›› 2020, Vol. 9 ›› Issue (5): 1340-1349.doi: 10.19799/j.cnki.2095-4239.2020.0130
Previous Articles Next Articles
Xiaohui ZHU(), Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA()
Received:
2020-04-02
Revised:
2020-04-18
Online:
2020-09-05
Published:
2020-09-08
Contact:
Hui XIA
E-mail:z214321372@126.com;xiahui@njust.edu.cn
CLC Number:
Xiaohui ZHU, Yuhang ZHUANG, Yang ZHAO, Mingzhu NI, Jing XU, Hui XIA. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349.
1 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657. |
2 | BLOMGREN G E. The development and future of lithium ion batteries[J]. Journal of the Electrochemical Society, 2017, 164: A5019-A5025. |
3 | BRACONNIER J J, DELMAS C, FOUASSIER C, et al. Electrochemical behavior of the phases NaxCoO2[J]. Materials Research Bulletin, 1980, 15: 1797-1804. |
4 | NAGELBERG A S, WORRELL W L. Thermodynamic study of sodium-intercalated TaS2 and TiS2[J]. Journal of Solid State Chemistry, 1979, 29: 345-354. |
5 | PARANT J P, OLAZCUAG R, DEVALETT M, et al. New phases of formula NaxMnO2 (x less than or equal to 1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-5. |
6 | WHITTINGHAM M S. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12: 41-99. |
7 | QIAN J F, ZHOU M, CAO Y L, et al. Nanosized Na4Fe(CN)6/C composite as a low-cost and high-rate cathode material for sodium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 410-414. |
8 | KIM S W, SEO D H, MA X, et al. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2: 710-721. |
9 | MENDIBOURE A, DELMAS C, HAGENMULLER P. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57: 323-331. |
10 | DELMAS C, FOUASSIER C, HAGENMULLER P. Structural classification and properties of the layered oxides[J]. Physica B+C, 1980, 99: 81-85. |
11 | GUO S, YI J, SUN Y, et al. Recent advances in titanium-based electrode materials for stationary sodium-ion batteries[J]. Energy & Environmental Science, 2016, 9: 2978-3006. |
12 | DELMAS C, BRACONNIER J J, MAAZAZ A, et al. Soft chemistry in AxMO2 sheet oxides[J]. Revue de Chimie Minérale, 1982, 19: 343-351. |
13 | MAAZAZ A, DELMAS C, HAGENMULLER P. A study of the NaxTiO2 system by electrochemical deintercalation[J]. Journal of Inclusion Phenomena, 1983, 1: 45-51. |
14 | BRACONNIER J J, DELMAS C, HAGENMULLER P. Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2[J]. Materials Research Bulletin, 1982, 17: 993-1000. |
15 | ZHAO J, ZHAO L W, DIMOV N, et al. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries[J]. Journal of the Electrochemical Society, 2013, 160: A3077-A3081. |
16 | LI Y, GAO Y, WANG X, et al. Iron migration and oxygen oxidation during sodium extraction from NaFeO2[J]. Nano Energy, 2018, 47: 519-526. |
17 | LEE E, BROWN D E, ALP E E, et al. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2[J]. Chemistry of Materials, 2015, 27: 6755-6764. |
18 | LI X, WANG Y, WU D, et al. Jahn-Teller assisted Na diffusion for high performance Na ion batteries[J]. Chemistry of Materials, 2016, 28: 6575-6583. |
19 | ZHOU Y N, DING J J, NAM K M, et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption[J]. Journal of Materials Chemistry A, 2013, 1: 11130-11134. |
20 | LEI Y, LI X, LIU L, et al. Synthesis and stoichiometry of different layered sodium cobalt oxides[J]. Chemistry of Materials, 2014, 26: 5288-5296. |
21 | WANG L, WANG J, ZHANG X, et al. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries[J]. Nano Energy, 2017, 34: 215-223. |
22 | KUBOTA K, IKEUCHI I, NAKAYAMA T, et al. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction[J]. The Journal of Physical Chemistry C, 2015, 119: 166-175. |
23 | KUBOTA K K, YABUUCHI N, YOSHIDA H, et al. Layered oxides as positive electrode materials for Na-ion batteries[J]. MRS Bulletin, 2014, 39: 416-422. |
24 | KUBOTA K, KUMAKURA S, YODA Y, et al. Electrochemistry and solid-state chemistry of NaMeO2 (Me=3d transition metals)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201703415. |
25 | BILLAUD J, CLÉMENT R J, ARMSTRONG A R, et al. β-NaMnO2: A high-performance cathode for sodium-ion batteries[J]. Journal of the American Chemical Society, 2014, 136: 17243-17248. |
26 | BERTHELOT R, CARLIER D, DELMAS C. Electrochemical investigation of the P2-NaxCoO2 phase diagram[J]. Nature Materials, 2011, 10: 74-80. |
27 | KUMAKURA S, TAHARA Y, KUBOTA K, et al. Sodium and manganese stoichiometry of P2-type Na2/3MnO2[J]. Angewandte Chemie International Edition, 2016, 128: 12952-12955. |
28 | CLÉMENT R J, BRUCE P G, GREY C P. Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials[J]. Journal of the Electrochemical Society, 2015, 162: A2589-A2604. |
29 | PARANT J P, OLAZCUAGA R, DEVALETTE M, et al. Sur quelques nouvelles phases de formule NaxMnO2 (x≤1)[J]. Journal of Solid State Chemistry, 1971, 3: 1-11. |
30 | TAPIA-RUIZ N, DOSE W M, SHARMA N, et al. High voltage structural evolution and enhanced Na-ion diffusion in P2-Na2/3Ni1/3-xMgxMn2/3O2 (0≤x≤0.2) cathodes from diffraction, electrochemical and ab initio studies[J]. Energy & Environmental Science, 2018, 11: 1470-1479. |
31 | SOMERVILLE J W, SOBKOWIAK A, TAPIA-RUIZ N, et al. Nature of the “Z”-phase in layered Na-ion battery cathodes[J]. Energy & Environmental Science, 2019, 12: 2223-2232. |
32 | WANG P F, YAO H R, LIU X Y, et al. Na+/vacancy disordering promises high-rate Na-ion batteries[J]. Science Advances, 2018, 4: doi: 10.1126/sciadv.aar6018. |
33 | ZHAO C, DING F, LU Y, et al. High-entropy chemistry stabilizing layered O3-type structure in Na-ion cathode[J]. Angewandte Chemie International Edition, 2019, 59: 1-7. |
34 | HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes[J]. Nature, 2020, 577: 502-508. |
35 | MORTEMARD DE BOISSE B, NISHIMURA S I, WATANABE E, et al. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7-x[□1/7Mn6/7]O2 (□: Mn vacancy)[J]. Advanced Energy Materials, 2018, 8: doi: 10.1002/aenm.201800409. |
36 | RONG X, HU E, LU Y, et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition[J]. Joule, 2019, 3: 503-517. |
37 | XIA H, ZHU X, LIU J, et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage[J]. Nature Communications, 2018, 9: doi: 10.1038/s41467-018-07595-y. |
38 | ORTIZ-VITORIANO N, DREWETT N E, GONZALO E, et al. High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries[J]. Energy & Environmental Science, 2017, 10: 1051-1074. |
39 | DOUBAJI S, PHILIPPE B, SAADOUNE I, et al. Passivation layer and cathodic redox reactions in sodium-ion batteries probed by HAXPES[J]. ChemSusChem, 2016, 9: 97-108. |
40 | MONYONCHO E, BISSESSUR R. Unique properties of α-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution[J]. Materials Research Bulletin, 2013, 48: 2678-2686. |
41 | KOMABA S, YABUUCHI N, NAKAYAMA T, et al. Study on the reversible electrode reaction of Na1-xNi0.5Mn0.5O2 for a rechargeable sodium-ion battery[J]. Inorganic Chemistry, 2012, 51: 6211-6220. |
42 | KUBOTA K, KOMABA S. Practical issues and future perspective for Na-ion batteries[J]. Journal of the Electrochemical Society, 2015, 162: A2538-A2550. |
43 | MYUNG S T, HITOSHI Y, SUN Y K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries[J]. Journal of Materials Chemistry, 2011, 21: 9891-9911. |
44 | MU L, XU S, LI Y, et al. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode[J]. Advanced Materials, 2015, 27: 6928-6933. |
45 | LI Y, YANG Z, XU S, et al. Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries[J]. Advanced Science, 2015, 2: doi: 10.1002/advs.201500031. |
46 | YAO H R, WANG P F, GONG Y, et al. Designing air-stable O3-type cathode materials by combined structure modulation for Na-ion batteries[J]. Journal of the American Chemical Society, 2017, 139: 8440-8443. |
47 | MU L Q, HU Y S, CHEN L Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries[J]. Chinese Physics B, 2015, 24: doi: 10.1088/1674-1056/24/3/038202. |
48 | HWANG J Y, MYUNG S T, CHOI J U, et al. Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 23671-23680. |
49 | GUO S, LI Q, LIU P, et al. Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J]. Nature Communications, 2017, 8: doi: 10.1038/s41467-017-00157-8. |
50 | TSUCHIYA Y, TAKANASHI K, NISHINOBO T, et al. Layered NaxCrxTi1-xO2 as bifunctional electrode materials for rechargeable sodium batteries[J]. Chemistry of Materials, 2016, 28: 7006-7016. |
51 | LI W, YAO Z, ZHOU C A, et al. Boosting high-rate sodium storage performance of N-doped carbon-encapsulated Na3V2(PO4)3 nanoparticles anchoring on carbon cloth[J]. Small, 2019, 15: doi: 10.1002/smll.201902432. |
52 | ZHANG Y, DENG S, SHEN Y, et al. Construction of 1T-MoSe2/TiC@C branch-core arrays as advanced anodes for enhanced sodium ion storage[J]. ChemSusChem, 2020, 13: 1575-1581. |
53 | CAO M H, WANG Y, SHADIKE Z, et al. Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5: 5442-5448. |
54 | SAHA S, ASSAT G, SOUGRATI M T, et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides[J]. Nature Energy, 2019, 4: 977-987. |
55 | LIU Q, HU Z, CHEN M, et al. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus prussian blue analogs[J]. Advanced Functional Materials, 2020, 30: doi: 10.1002/adfm.201909530. |
[1] | Xiongwen XU, Yang NIE, Jian TU, Zheng XU, Jian XIE, Xinbing ZHAO. Abuse performance of pouch-type Na-ion batteries based on Prussian blue cathode [J]. Energy Storage Science and Technology, 2022, 11(7): 2030-2039. |
[2] | Xiaoyu SHEN, Guanjun CEN, Ronghan QIAO, Jing ZHU, Hongxiang JI, Mengyu TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2022 to May 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(7): 2007-2022. |
[3] | ZHOU Wei, FU Dongju, LIU Weifeng, CHEN Jianjun, HU Zhao, ZENG Xierong. Research progress on recycling technology of waste lithium iron phosphate power battery [J]. Energy Storage Science and Technology, 2022, 11(6): 1854-1864. |
[4] | ZHANG Haoran, CHE Haiying, GUO Kaiqiang, SHEN Zhan, ZHANG Yunlong, CHEN Hangda, ZHOU Huang, LIAO Jianping, LIU Haimei, MA Zifeng. Preparation of Sn-doped NaNi1/3Fe1/3Mn1/3-x Sn x O2 cathode materials and their electrochemical performance [J]. Energy Storage Science and Technology, 2022, 11(6): 1874-1882. |
[5] | ZHANG Yan, WANG Hai, LIU Zhaomeng, ZHANG Deliu, WANG Jiadong, LI Jianzhong, GAO Xuanwen, LUO Wenbin. Research progress of nickel-rich ternary cathode material ncm for lithium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(6): 1693-1705. |
[6] | Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Feb. 1, 2022 to Mar. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(5): 1289-1304. |
[7] | Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200. |
[8] | Haiyan HU, Shulei CHOU, Yao XIAO. Layered oxide cathode materials based on molecular orbital hybridization for high voltage sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1093-1102. |
[9] | Qiannan LIU, Weiping HU, Zhe HU. Research progress of phosphorus-based anode materials for sodium-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(4): 1201-1210. |
[10] | Miao WU, Guiqing ZHAO, Zhongzhu QIU, Baofeng WANG. Preparation and electrochemical properties of NiCo2O4 as a novel cathode material for aqueous zinc-ion batteries [J]. Energy Storage Science and Technology, 2022, 11(3): 1019-1025. |
[11] | Guanjun CEN, Jing ZHU, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Mengyu TIAN, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Dec. 1, 2021 to Jan. 31, 2022) [J]. Energy Storage Science and Technology, 2022, 11(3): 1077-1092. |
[12] | Mengyu TIAN, Jing ZHU, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Hongxiang JI, Feng TIAN, Zhou JIN, Yong YAN, Yida WU, Yuanjie ZHAN, Hailong YU, Liubin BEN, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries(Oct. 1, 2021 to Nov. 30, 2021) [J]. Energy Storage Science and Technology, 2022, 11(1): 297-312. |
[13] | Hongxiang JI, Zhou JIN, Mengyu TIAN, Yida WU, Yuanjie ZHAN, Feng TIAN, Yong YAN, Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Jing ZHU, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Aug. 1, 2021 to Sept. 30, 2021) [J]. Energy Storage Science and Technology, 2021, 10(6): 2411-2427. |
[14] | Feng TIAN, Hongxiang JI, Mengyu TIAN, Ronghan QIAO, Guanjun CEN, Xiaoyu SHEN, Yida WU, Yuanjie ZHAN, Zhou JIN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Jun. 1, 2021 to Jul. 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(5): 1854-1868. |
[15] | Guanjun CEN, Ronghan QIAO, Xiaoyu SHEN, Mengyu TIAN, Hongxiang JI, Feng TIAN, Wenbin QI, Zhou JIN, Yida WU, Yuanjie ZHAN, Yong YAN, Liubin BEN, Hailong YU, Yanyan LIU, Xuejie HUANG. Reviews of selected 100 recent papers for lithium batteries (Apr. 1, 2021 to May 31, 2021) [J]. Energy Storage Science and Technology, 2021, 10(4): 1237-1252. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||